ISHRAE

Indoor Environmental Quality Standard

Second version: 2018-2019

Index Clause no. Clause Page no. Foreword 3 Introduction 4 – 5 6 1 Scope Normative reference 7 – 9 2 3 Terms and definitions 10 – 15 4 16 Classification 17 – 18 5 Abbreviations, symbols and units Indoor Environment Quality elements – Tests and Testing methods 19 - 42 6 43 - 45 7 Occupant satisfaction survey Document methodology 46 - 48 8 Annexure A Thermal comfort 49 – 51 (informative) 52 - 60 Indoor air quality Annexure B (informative) Visual comfort 61 – 63 Annexure C (informative) Recommended methodology to calculate Equivalent Melanopic Lux (EML) for different type of lighting conditions Annexure D 64 – 66 (normative) Recommended methodology to calculate lighting comfort parameters 67 Annexure E (normative) Annexure F Acoustic comfort (informative)

18

19 20 21 22 23 24 25 26 Foreword

27			
28			
29			
30			
31			
32			
33			
34			
35			
36 37			
38			
39			
40			

44 Introduction

Indoor Environmental Quality (IEQ) refers to the environmental conditions inside regularly occupied space that is determined by many factors, including indoor air quality (IAQ), thermal comfort, visual comfort, acoustic comfort as well as ergonomics. IEQ has an impact on health, comfort, and safety, which in turn

48 affects productivity of occupants.

49 Research has shown that poor IEQ can have short and long term health effects. Indoor air pollutants can 50 lead to health disorders such as headaches, allergies, asthma, and other respiratory diseases. Furthermore, 51 conditions such as temperature, relative humidity, noise and lighting levels outside the acceptable comfort 52 ranges could increase the stress level in human body, thus creating health issues like sleep disorder,

53 digestive problems, and memory and concentration impairment besides resulting into discomfort of 54 occupant.

In a good indoor environment, work efficiency of occupants gets enhanced, learning results are better among students and absenteeism is lower. This in-turn increases workplace productivity and test scores in

- 57 schools, which is supported by research.
- 58

59

This standard identifies thermal comfort, indoor air quality, comfort and acoustic comfort as four critical elements of IEQ. Each of these elements have been covered by defining their threshold levels of IEQ parameters. Three levels for defining threshold values have been created: Class A (Aspirational), Class B (Acceptable) and Class C (Marginally acceptable). The defined threshold levels become more stringent for Class B and Class A. Some parameters have been omitted in Class B and Class C as the standard is applicable to variety of buildings ranging from unconditioned residences to large air conditioned commercial complexes. Class A is comparable with international standards.

67 This standard is designed in such a way that an IEQ rating system can be evolved. Any building evaluated 68 using this standard, can be assessed as Class A, Class B, and Class C while complying with any individual 69 parameter. It is possible that for one parameter; example IAQ, a building may perform better than Class A, 70 whereas, for some other, it might not even meet threshold level as Class C.

71 There are several other IEQ elements and parameters that could have been included in this standard.
72 However, wherever reliable supporting data, published studies, and affordable measuring instruments are
73 not easily available, this version of the standard has excluded such elements and parameters. It is also

envisaged that effect of most such parameters is likely to be covered through occupant satisfaction survey.
 Efforts have been made to utilise the knowledge and research presented in several India specific studies.

IEQ considerations need not be a constraint for energy efficiency in buildings. An integrated design
 approach that considers both indoor environmental quality and energy efficiency is crucial for the long term
 sustainability of buildings in India.

1. Scope

120 121 122 123	This standard defines the classification of built environment based on threshold values for below mentioned Indoor Environment Quality elements in a regularly occupied space of residential and non-residential buildings with low and moderate level of activities. This standard is applicable for Naturally ventilated , Mixed mode and Air conditioned building types.
124	The IEQ parameters under the scope of this standard are :
125 126 127 128 129 130	 a. Indoor air quality b. Thermal comfort c. Visual comfort d. Acoustic comfort This standard also defines the test requirement and test method for measurement of the IEQ parameters.
131 132 133	Out of Scope The below type of built environment is out of scope of this standard. a) Spaces used for high intensity activities.
134 135	 b) Special purpose built environment for Specific requirements such as Operation Theatres, Intensive Care Units, clean room, scientific laboratories, industry and other specialized applications.
136 137 138 139 140 141 142	 c) Indoor environmental quality parameters such as water quality, odours ergonomics, electromagnetic radiations, vibrations and others.
143	
144	
145	
146	
147	
148	
149	
150	
151	
152	

153 2. Normative References

The following standards contain provision which through reference in this text constitute provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below.

- 158 IS 5182 Part 2: Methods for Measurement of Air Pollution, Part 2: Sulphur Dioxide
- 159 IS 5182 Part10: Methods for Measurement of Air Pollution, Part 10: Carbon Monoxide
- 160 IS 5182 Part 9: Methods for measurement of air pollution, Part 9: Oxidants
- 161 IS 36461: Code of Practice for Interior Illumination
- 162 IS 3646-1: Code of practice for interior illumination
- 163 NBC 2005: the National Building Code of India 2005
- 164 Central Pollution Control Board Indoor Air Pollution Monitoring Guidelines, 2014
- 165 Central Pollution Control Board the Noise Pollution (Regulation and Control) Rules, 2000
- ISO 3382 Part 1: Acoustics Measurement of room acoustic parameters Part 1: Performance
 spaces
- ISO 3382 Part 2: Acoustics Measurement of room acoustic parameters Part 2: Reverberation time
 in ordinary rooms
- 170 ISO 3382 Part 3: Acoustic parameters Part 3: Open plan offices
- 171 ISO 18233: Acoustics Application of new measurement methods in building and room acoustics
- ISO 1996-2: Acoustics -- Description, measurement and assessment of environmental noise Part 2:
 Determination of environmental noise levels
- ISO 16283-1: Acoustics Field measurement of sound insulation in buildings and of building elements
 Part 1: Airborne sound insulation
- ISO 16283-1: Acoustics Field measurement of sound insulation in buildings and of building elements
 Part 2: Impact sound insulation
- ISO 16017-1: Indoor, ambient and workplace air -- Sampling and analysis of volatile organic compounds
 by sorbent tube/thermal desorption/capillary gas chromatography Part 1: Pumped sampling
- ISO 16000-3: Determination of formaldehyde and other carbonyl compounds in indoor air and test
 chamber air -- Active sampling method
- 182 ISO 16000-5: Sampling strategy for volatile organic compounds (VOCs)

- 183 ISO 16000-6: Determination of volatile organic compounds in indoor and test chamber air by active 184 sampling on Tenax TA sorbent, thermal desorption and gas chromatography using MS or MS-FID
- 185 ISO 16000-15: Sampling strategy for nitrogen dioxide (NO2)
- 186 ISO 16000-16: Detection and enumeration of moulds Sampling by filtration
- 187 ISO 16000 -17: Detection and enumeration of moulds Culture-based method
- 188 ISO 16000 -18: Detection and enumeration of moulds Sampling by impaction
- 189 ISO 16000 -19: Sampling strategy for moulds
- 190 ISO 16000 -20: Detection and enumeration of moulds -- Determination of total spore count
- 191 ISO 16000 -21: Detection and enumeration of moulds —Sampling from materials
- 192 ISO 16000-26: Sampling strategy for carbon dioxide (CO₂)
- 193 ISO 16000-34: Strategies for the measurement of airborne particles (PM 2.5 fraction)
- 194 ISO 16000-37: Strategies for the measurement of PM 2.5
- 195 ISO 7730 Ergonomics of the thermal environment -- Analytical determination and interpretation of 196 thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria
- 198 IEC 60268 Part 16: Objective rating of speech intelligibility by speech transmission index.
- 199 IEC 61672: Electro acoustics Sound level meters Part 1: Specifications
- 200 ANSI S1.13 Measurement of Sound Pressure Levels in Air
- 201 ASHRAE 55-2013: Thermal Environment Conditions for Human Occupancy
- 202 ASHRAE HANDBOOK 2011: HVAC Applications
- 204 ASTM E 1130: Objective measurement of speech privacy using Articulation Index.
- 206 ASTM E 1374: Guide for open office acoustics and applicable standards.
- ASTM International Designation E336-97: Standard Test Method for Measurement of Airborne Sound
 Insulation in Buildings
- 210 ANSI S12.60: Guidelines for classroom acoustics.
- 211 BS8233:1999 Sound Insulation and noise reduction for buildings Code of practice.
- 212

203

205

- 213 BS EN ISO 717-1:1997 Acoustics Rating of sound insulation in buildings and of building elements –
- 214 Part 1 Airborne sound insulation.

215	WELL v2 TM- The WELL Building Standard TM
216	REHVA Guidebook nº 14: Indoor Climate Quality Assessment
217	CIBSE: The SLL Code for Lighting
218	IS SP 72 National Lighting Code -2010
219	EN-12464-1 Light and lighting - Lighting of work places - Part 1:
220	
221 222	
222	
225	
225	
226	
227	
228	
229	
230	
231	
232	
233	
234	
235	
236	
237	
238 239	
239	
240	
242	
243	
244	
245	
246	
247	
248	
249	
250	
251	
252 253	
253 254	
255	
256	
257	

258	3	Terms	and Definitions
259	0.	3.1.	General
260		0.1.	This section of the standard provides the general terms and definitions applicable to this
261			standard. The Indoor Environment Quality (IEQ) specific parameter wise terms and definitions
262			are provided in subsequent clauses.
263		311	Accuracy
263		5.1.1.	It is the amount of uncertainty in a measurement with respect to an absolute standard. Accuracy
265			specifications usually contain the effect of errors due to gain and offset parameters.
265		3.1.2.	
267		5.1.2.	In this standard the term 'elements' refer to thermal comfort, indoor air quality, lighting and
268			acoustic related dimensions of indoor environment.
269		3.1.3.	
205		0.1.0.	Indoor environmental quality (IEQ) refers to the quality of a built environment in relation to the
270			health and wellbeing of those who occupy space within it
271		311	Range
272		5.1.4.	The upper and lower limits to which an instrument can measure a value or signal
273		3.1.5.	
275		5.1.5.	An individual or composite or average of several individuals that is representative of the
275			population occupying a space for 15 minutes or more. In this standard, the term 'occupant'
270			refers to 'representative occupant'.
278		316	Resolution
279		5.1.0.	Resolution is the ability to 'resolve' differences; that is, to draw a distinction between two things.
275			High resolution means being able to resolve small differences. In a digital system, resolution
280			means the smallest increment or step that can be taken or seen. In an analog system, it means
282			the smallest step or difference that can be reliably observed.
282		3.2.	Thermal comfort
283			2.1.General
285		0.2	The IEQ parameter - Thermal comfort related terms and definitions are provided in this
286			section of the standard.
287		3.2.2.	Acceptable thermal environment
288		0.2.2.	Thermal environment that a substantial majority of the occupants find thermally acceptable.
289		3.2.3.	Adaptive model
290		0.2.0.	A model that relates indoor design conditions or acceptable ranges of indoor environment
291			parameters, such as temperature, to outdoor meteorological or climatological parameters. It
292			also encompasses gradual diminution of the people's response to repeated environmental
293			stimulation and subsumes all processes which building occupants undertake in order to
294			improve the comfort of the indoor environment.
295		3.2.4.	Average air speed
296		0.2.1.	The air speed surrounding a representative occupant averaged with respect to location and
297			time. The spatial average is for three heights as defined for average air temperature.
298		3.2.5.	
299		0.2.0.	The air temperature surrounding a representative occupant averaged with respect to location
300			and time.
301		3.2.6.	
302		0.2.0.	A unit used to express the thermal insulation provided by garments and clothing ensembles.
303			where 1 clo = $0.155 \text{ m}^2 \text{ K/W}$.
304		3.2.7.	
305		J.L./ .	The unwanted local cooling of the body caused by air movement.
306			
550			

307	3.2.8.	Floor temperature	
308		The surface temperature of the floor where it is in contact with the occupant's feet.	
309	3.2.9.	Local thermal discomfort	
310		The thermal discomfort caused by locally specific conditions such as a vertical air	
311		temperature difference between the feet and the head, by radiant temperature asymmetry,	
312		by local convective cooling (draft), or by contact with a hot or cold floor.	
313	3.2.10.	Metabolic rate	
314		The rate of transformation of chemical energy into heat and mechanical work by metabolic	
315		activities of an individual, per unit of skin surface area and expressed in units of met, equal	
316		to 58.2 W/m ² , which is the energy produced per unit skin surface area of an average person	
317	2.2.44	seated at rest.	
318	3.2.11.	Mean Radiant Temperature	
319		The uniform temperature of an imaginary enclosure in which the radiant heat transfer from	
320 321	2 2 4 2	the human body is equal to the radiant heat transfer in the actual non-uniform enclosure. Mixed Mode	
321	3.2.12.	"Mixed mode" refers to a hybrid approach to space conditioning that uses a combination of	
323		natural ventilation from operable windows (either manually or automatically controlled), and	
323 324		mechanical systems that include air distribution equipment and refrigeration equipment for	
324		cooling.	
325	3 2 1 3	Operative Temperature:	
327	0.2.10.	A uniform temperature of a radiantly black enclosure in which an occupant would exchange	
328		the same amount of heat by radiation plus convection as in the actual non-uniform	
329		environment. It is the combined effect of the mean radiant temperature and air temperature	
330		and is the mean of these two under specific conditions. It is also known as dry resultant	
331		temperature or resultant temperature.	
332	3.2.14.	Radiant Temperature Asymmetry	
333		The difference between the plane radiant temperature (tpr) in opposite directions. The vertical	
334		radiant temperature asymmetry is with plane radiant temperatures in the upward and	
335		downward directions. The horizontal radiant temperature asymmetry is the maximum radiant	
336		temperature asymmetry for all horizontal directions. The radiant temperature asymmetry is	
337		determined at waist level, 0.6 m for a seated occupant and 1.1 m for a standing occupant.	
338	3.2.15.	Relative Humidity	
339		Ratio of the partial pressure of actual water vapour in the air as compared to the partial	
340		pressure of maximum amount of water vapour that may be contained at its dry bulb	
341		temperature.	
342	3.2.16.	Thermal comfort	
343		The condition of mind that expresses satisfaction with the thermal environment and is	
344		assessed by subjective evaluation.	
345	3.2.17.	Thermal environment	
346		The environmental conditions that affect a person's thermal balance with surroundings.	
347	3.2.18.	Vertical air temperature difference	
348		Air temperature difference between head and ankle level of occupant.	
349			
350	3.3.	Indoor air quality	
351	3.3.1		
352		The IEQ parameter - Indoor Air Quality related terms and definitions are provided in this	
353		section of the standard.	
354			
355			

356	3.3.2.	Indoor Air Quality
357	0.0.2.	Air quality that refers to the nature of unconditioned or conditioned air that circulates
358		throughout the space where one works or lives, that is, the air one breathes when indoors.
359	3.3.3.	o
360	0.0.0.	A complex mixture of tiny particles that consists of dry solid fragments, solid cores with liquid
361		coatings, and small droplets of liquid. These particles vary greatly in shape, size and chemical
362		composition, and can be made up of many different materials such as metals, soot, soil, and
363		dust. Particulate matter that has an aerodynamic diameter of 10 µm and below is referred to
364		as PM_{10} . Particulate that are 2.5 μ m aerodynamic diameters and smaller are $PM_{2.5}$. Thus all
365	224	PM _{2.5} is included in PM ₁₀ , although the converse is not true.
366	3.3.4.	5 1 ()
367		Organic, and therefore carbon and hydrogen containing, materials which evaporate and
368		diffuse easily at ambient temperature. VOCs are emitted by a wide array of building materials,
369	225	paints and common consumer products.
370	3.3.5.	5 1 ()
371		Sum of the concentrations of identified and unidentified volatile organic compounds eluting
372	0.0.0	between and including n-hexane and n-hexadecane.
373	3.3.6.	, .
374		Is a measure of viable bacterial or fungal cells. In direct microscopic counts where all cells,
375		dead and living, are counted, but CFU measures only viable cells. For convenience the results
376		are given as (colony-forming units per cubic meter) or CFU/m ³ for air (grab) sample or CFU/m ²
377		for surface (swab) sample.
378	3.4.	Visual comfort
379	3.4	1.General
380		The IEQ parameter - Visual comfort related terms and definitions are provided in this
381		section of the standard.
382	3.4.2.	Back Ground Area
383		In indoor work places, particularly a large part of the area surrounding an active and occupied
384		task area which needs to be illuminated. This area is known as the 'background area'. Should
385		be a border at least 3 m wide adjacent to the immediate surrounding area within the limits of
386		the space.
387	3.4.3.	Circadian Rhythm
388		Internal clock that keeps the body's hormones and bodily processes on a roughly 24 hour
389		cycle, even in continuous darkness.
390	3.4.4.	Correlated Colour Temperature
391		Spectral distribution of electromagnetic radiation of a blackbody at a given temperature. For
392		example, the colour temperature during the daytime is approximately 15,000 K, while during
393		sunset is approximately 1,850K.
394	3.4.5.	Daylight factor
395		Ratio of the luminance at a point on a given indoor plane due to the light received directly or
396		indirectly from the sky of assumed or known luminance distribution, to the luminance on a
397		horizontal plane from an unobstructed hemisphere of the same sky. The contribution to direct
398		sunlight to both luminance is excluded. It is expressed in percentage.
399	3.4.6.	Disability Glare
400		Disability glare is the loss of retinal image contrast as a result of intra-ocular light scatter, or
401		stray light. It has been described as a reduction of visual acuity caused by light elsewhere in
402		the field of vision. Disability glare can be produced directly or by reflection.
403		

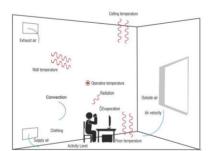
404	3.4.7.	Discomfort Glare
405		Glare that causes discomfort without necessarily impairing the vision of objects. Discomfort
406		glare can be produced directly or by reflection
407	3.4.8.	Equivalent Melanopic Lux (EML)
408		A measure of light used to quantify how much a light source will stimulate melanopsin's light
409		response.
410	3.4.9.	Glare
411		Glare is the sensation produced by bright areas within the visual field, such as lit surfaces,
412		parts of the luminaries, windows and/or roof lights. Glare shall be limited to avoid errors,
413		fatigue and accidents. Glare is the visual sensation produced by bright areas within the field
414		of view and may be experienced either as discomfort glare or disability glare. Glare may also
415		be caused by reflections in specular surfaces usually known as veiling reflections or reflected
416		glare.
417		Note:
418		Disability glare is more common in exterior lighting but may also be experienced from
419		spotlights or large bright sources such as a window in a relatively poorly lit space.
420		In interior workplaces discomfort glare usually arises directly from bright luminaires or
421		windows. If the discomfort glare limits are met then disability glare is not usually a major
422		problem.
423	3.4.10.	Illuminance
424		Illuminance is the incident luminous flux density on a differential element of surface located
425		at a point and oriented in a particular direction, expressed in lumens per unit area. Since the
426		area involved is differential, it is customary to refer to this as illuminance at a point. The unit
427		of measurement is lux
428	3.4.11.	Illuminance of the immediate surrounding areas
429		A zone of at least 0.5 m width surrounding the task area within the field of vision.
430	3.4.12.	
431		Unit of illuminance, one lux being equivalent to one lumen per square meter.
432	3.4.13.	Reflected Glare
433		The variety of ill effects on visual efficiency and comfort produced by unwanted reflection in
434		and the task area.
435	3.4.14.	Task Area
436	0.4.45	The partial area in the workplace in which the visual task is located and carried out.
437	3.4.15.	Working plane
438		The reference surface defined as the plane at which work is usually done.
439 440	2 5 1 00	ustic comfort
440 441		.General
441	3.5.1	The IEQ parameter - Acoustic comfort related terms and definitions are provided in this
442		section of the standard.
444	3.5.2.	A-Weighted Decibel
444 445	5.5.2.	Ten times the common logarithm of the square of the ratio of time-averaged A-weighted
446		sound pressure to the reference sound pressure of 20 micro-pascals. Unit of A weighted
447		decibel
448	3.5.3.	Decibel
449	0.0.0.	Ten times the common logarithm of the square of the ratio of the sound pressure to the
450		reference sound pressure of 20 micropascals.
451		
452		

453	3.5.4.	Indoor Ambient Noise
454 455		The all-encompassing Noise in a given situation at a given time, usually composed of noise from many sources, inside and outside the building, but excluding noise from activities of the
456		occupants.
457	3.5.5.	Noise Criteria
458 459		Noise criteria is a single numerical index commonly used to define design goals for the maximum allowable noise in a given space. The noise criterion equals the lowest curve which
460		is not exceeded in the spectra ranging from 63 – 8000 Hz.
461	3.5.6.	Noise Isolation Class
462		Noise Isolation Class is a method for rating a partition's ability to block airborne noise transfer.
463 464		Note: Similar to a field STC test, NIC is often specified on certain projects (such as spaces with operable walls, hotels, education facilities). For a field STC test, the individual transmission loss measurements are modified based
465 466		on the reverberation time, the size of the room and the size of the test partition. The NIC does not include these modifications and simply measures the transmission loss between 125 and 4,000Hz.
467	3.5.7.	Octave Band
468		Band of frequencies in which the upper limit of the band is twice the frequency of the lower
469		limit.
470	3.5.8.	Pink noise
471		Pink noise is acoustical energy distributed uniformly by octave throughout the audio spectrum
472 473		(the range of human hearing, approximately 20 Hz to 20 kHz).
474	3.5.9.	Privacy Index
475		Privacy Index is a measure for rating speech privacy performance (or lack of speech
476		intelligibility) of an architectural space.
477	3.5.10.	Reverberant sound or Reverberation
478 479	2511	The sound in an enclosed space, which results from, repeated reflections at the boundaries. Reverberation time
479	5.5.11.	Reverberation time is the time required for a steady-state sound to reach one millionth or -
481		60dB of its original intensity.
482	3.5.12.	Sound
483		A vibrational disturbance, exciting hearing mechanism, transmitted in a predictable manner
484 485		determined by the medium through which it propagates. To be audible the disturbance shall
		have to fall within the frequency range of 20Hz to 20000 Hz.
486 487	3.5.13.	Sound Level Difference Difference between the sound pressure level in the source room and the sound pressure
487		level in the receiving room.
489	351/	Sound pressure level
490	5.5.14.	Ten times the logarithm to the base 10 of the ratio of the square of the sound pressure, p, to
491		the square of a reference value, p_o , expressed in decibels
402		$L_p = 10 \log \frac{p^2}{p_0^2} dB$
492		$L_p = 1000g \frac{1}{p_0^2} dB$
493		Where the reference sound pressure value p_o is 20 Pa;
494		L_p is Sound pressure level.
495		p is the sound pressure

496 497 498	3.5.15.	Sound Source Equipment or phenomena which generate sound. Source room is the room containing sound source.
499 500 501 502 503 504	3.5.16.	Sound Transmission Class The Sound Transmission Class is a single number rating of the effectiveness of a material or construction assembly to retard the transmission of airborne sound. It is also known as Sound Reduction Index (SRI).Sound Transmission Class rates a partition's resistance to airborne sound transfer at the speech frequencies (125-4000 Hz). The higher the number, the better the isolation.
505 506 507	3.5.17.	Speech Transmission Index Speech transmission index is a parameter that defines the clarity of the sound inside a space. It is rated between 0 and 1, 0 being worst and 1 being best.
508 509 510	3.5.18.	Standardized Level Difference Difference in sound level between a pair of rooms, in a stated frequency band, normalized to a reverberation time of 0.5 s for dwellings.
511 512 513	3.5.19.	Third Octave Band Band of frequencies in which the upper limit of the band is 2½ times the frequency of the lower limit.
514 515	3.5.20.	Time-averaged sound level A-weighted equivalent sound pressure level in dB measured over a period of time t.
516 517 518	3.5.21.	Weighted Level Difference Single number quantity that characterises airborne sound insulation between rooms but which is not adjusted to reference conditions.
519 520	3.5.22.	Weighted Standardized Level Difference Single number quantity that characterises airborne sound insulation between rooms.
521		
522		
523		
524		
525		
526		
527		
528		
529		
530		
531		
532		

533	4.	
534		The built environment is classified as Class A - Aspirational, Class B – Acceptable and Class C –
535		Minimum acceptable based on the measured values for individual parameters of IEQ elements as
536		specified in the Table 2 and 3 for Thermal comfort, Table 5, for IAQ, Table 12 for Visual comfort
537		and Table 13 & 14 for Acoustic comfort.
538		
539		
540		
541		
542		
543		
544		
545		
546		
547		
548		
549		
550		
551		
552		
553		
554 555		
556		
557		
558		
559		
560		
561		
562		
563		
564		
565		
566		
567		
568		
569		
570		
571		
572		
573		
574		
575 576		
576 577		
578		
578		
580		

582 5. Abbreviations, symbols and units583 5.1. Abbreviations


5.1.	Abbreviations
AHU	Air Handling Unit
ANSI	American National Standards Institute
ASHRAE	American Society of Heating, Refrigerating, and Air Conditioning Engineers
ASTM	American Society for Testing and Materials
BEAM	Building Environment Assessment Method
CCT	Correlated Colour Temperature
CFL	Compact Fluorescent Lamp
EML	Equivalent Melanopic Lux
HVAC	Heating Ventilating and Air Conditioning
IAQ	Indoor Air Quality
IEC	International Electrotechnical Commission
IEQ	Indoor Environmental Quality
IS	Indian Standard
ISHRAE	Indian Society of Heating, Refrigerating, and Air Conditioning Engineers
ISO	International Organization for Standarization
NBC	National Building Code
NC	Noise Criteria
NCB	Balanced Noise Criteria
NIC	Noise Isolation Class
PM	Particulate Matter
RH	Relative Humidity
STC	Sound Transmission Class
STI	Sound Transmission Index
TVOC	Total Volatile Organic Compound

5.2.	Symbols
а	Ambient
C_6H_6	Benzene
CH ₂ O	Formaldehyde
CO	Carbon monoxide
CO ₂	Carbon dioxide
D	Sound Level Difference
D _{nt}	Standardisation Level Difference
D _{nt, w}	Weighted Standardisation Level Difference
Dw	Weighted Difference Level
L _{Aeq,T}	A-weighted equivalent sound pressure level in dB measured over a period of time t.
NO ₂	Nitrogen dioxide
O3	Ozone
SO ₂	Sulphur dioxide
Т	Reverberation Time
ta	Ambient Temperature
t _{mr}	Mean Radiant Temperature
to	Operative Temperature
t _{pr}	Plane Radiant Temperature
θ	Velocity

5.3

5.3.	Units
°C	degree Celsius
μg	Microgram
clo	Clothing Insulation
CFU	Colony Forming Units
dB	Decibel
$D_{nT,w}$	Weighted Standardized Level Difference
Hz	Hertz
К	Kelvin
L	Lux
m	Meter
met	Metabolic Rate
Ра	Pascal
ppm	Parts Per Million
S	Second
W	Watt

- 618 6. Indoor Environmental Quality elements and parameters - tests and testing methods 619 6.1. General 620 This section of the standard defines testing method of every parameter of four IEQ elements. Measurement 621 sampling shall be representative of locations where the occupants are known to, or, are expected to spend 622 their time. All measurements shall be carried out at steady indoor conditions. The sampling duration must represent both, "peak" and "average" indoor exposure. For any IEQ parameter, wherever the representative 623 measurement location is specified in particular, it supersedes this clause. 624 625 Thermal comfort 626 6.2. 627 6.2.1.General 628 Thermal conditions play a critical role in influencing occupant comfort and well-being. This standard specifies thermal environmental conditions acceptable for healthy adults at 629
- 630 a. Atmospheric pressure equivalent to altitudes up to 3000 m
- 631 b. Indoor spaces designed for human occupancy for periods not less than 15 minutes.
- 632This standard specifies set of thermal conditions which are based upon adaptive thermal comfort633approach. It also encompasses gradual diminution of the people's response to repeated634environmental stimulation and subsumes all processes which building occupants undertake in635order to improve the comfort of the indoor environment.
- 636 Thermal comfort is affected by physical and physiological parameters as shown in Figure 1.

Suppy and Activity Level Activity Level
Figure 1 Factors affecting thermal comfort in an indoor environment
Physical parameters
a. Air temperature
b. Vertical air temperature difference
c. Mean radiant temperature
d. Radiant temperature asymmetry
e. Floor surface temperature
f. Relative Humidity
g. Air speed
Note: The details of above parameters are specified in Annex A
Physiological factors
a. Metabolic rate
b. Clothing insulation
Note: Effects of these physiological factors on thermal comfort are out of scope of this standard.

653 6.2.2. Thermal comfort threshold values

654The values for quality of thermal environment for representative occupant of a space shall be as655specified in table 1

656 Table 1: Conditions for thermal comfort measurement

Air velocity	Weather condition	Level of activity	Reference table for
			Threshold Values
Up to 0.2m/s	Summer / winter	Low and medium	Table 3
Above 0.2m/s	Summer / winter	Low and medium	Chart 1

657

652

658Table 2. Acceptable range of thermal comfort parameters with air velocity up to 0.2 m/s and low / medium659activity level in summer / winter condition

Parameters	Units		Class A	Class B	Class C
Operative Temperature	°C	If air velocity < 0.2 m/s If air velocity > 0.2 m/s	Table 3 Calculate using Chart 1		
Relative Humidity	%		30 – 70	30 - 70	 a. 30 - 70 (where, humidity control exists) b. Building must demonstrate 80% occupant satisfaction with respect to relative humidity (where, humidity controls does not exists)
		Warm Ceiling	<7	-	-
Radiant Temperature	°C	Cool Wall	<13	-	-
Asymmetry		Cool Ceiling	<18	-	-
· · · · · · · -		Warm Wall	<35	-	-
Vertical Air Temperature Difference	°C		4	-	-
Floor Surface Temperature (only for floor based cooling/heating)	°C		17 - 31	-	-
Occupant Satisfaction	%		90	80	-

661	Table 3. Acceptable range of operative temperature with air velocity up to 0.2 m/s
001	rabie el receptable range el eperative temperature mar teleenty ap te el2 m/e

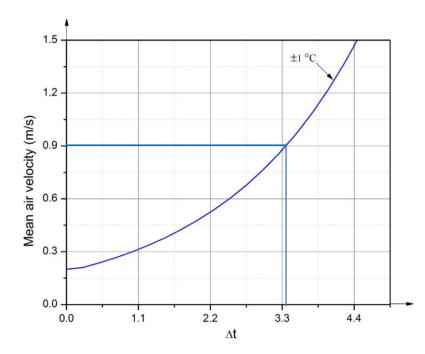
Level of Activity	Type of Building/Space	Operative Temperature	
Level of Activity	Type of Building/Space	(°C)	

		Summer (Cooling season) ~0.5 clo	Winter (Heating season) ~1.0 clo
Low	Offices, Conference room, Auditorium, Cafeteria / Restaurant, Classroom	24.5 ± 2.5	22.0 ± 3.0
Medium	Retail stores, Shopping Malls	23.0 ± 3.0	19.0 ± 4.0

Calculating operative temperature for air velocity up to 0.2 m/s

$$t_o = \frac{\left(t_{mr} + \left(t_a \times \sqrt{10\vartheta}\right)\right)}{1 + \sqrt{10\vartheta}}$$

where, ϑ = air velocity


 t_a = air temperature

 t_{mr} = mean radiant temperature

It is also acceptable to approximate this relationship for occupants engaged in near sedentary physical

activity (with metabolic rates between 1.0 met and 1.3 met), not in direct sunlight, and not exposed to air velocities greater than 0.20 m/s.

 $t_o = \frac{(t_{mr} + t_a)}{2}$

680

679 Chart 1. Required Air Speed to Offset Increased Temperature

681 Example: If in a given room, an occupant is involved in the moderate level of activity, air speed in room is 682 0.9 m/s and operative temperature is 27°C, then by using above mentioned graph Δt is 3.3° C. It makes 683 acceptable room air temperature as 27° C + 3.3° C.

684

695

696

685 6.2.3. Testing Methods of Thermal comfort

686The representative sample locations shall be the locations where most extreme values of the687thermal parameters are observed or estimated to occur (e.g., potentially occupied areas near688windows, diffuser outlets, corners, and entries).

At locations where occupancy distribution cannot be observed or estimated, the measurement locations shall include:
locations shall include:
a. The center of the room or space
b. 1.0 m inward from the center of each of the walls.
c. In the case of exterior walls with windows, the measurement location shall be 1.0 m

inward from the center of the largest window.

697 The measurement method at selected locations shall be as defined in Table 4.

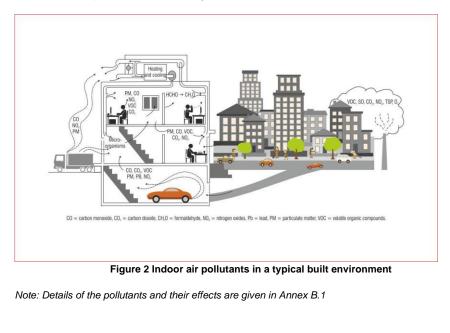
Table 4 Testing methods of thermal comfort

_	
Parameter	Measurement Methodology
Air temperature &	a. Air temperature and average air speed (ϑ_a) shall be measured at the 0.1 m,
Average air speed	0.6 m, and 1.1 m levels for seated occupants at plan locations. *
(The temperature of	
the air surrounding the occupant.)	 Measurements for standing occupants shall be made at the 0.1 m, 1.1 m, and 1.7 m levels. *
	c. Speed is averaged over an interval not less than 1 minute and not more than 3 minutes. Variations that occur over a period greater than 3 minutes shall be treated as multiple different air speeds.
	d. The spatial average is the numerical average of the air temperature at the ankle level, the waist level, and the head level. These levels are 0.1 m, 0.6 m, and 1.1 m for seated occupants and 0.1 m, 1.1 m, and 1.7 m for standing occupants. Time averaging is over a period not less than 3 minutes and not more than 15 minutes.
Vertical air	a. Shall be calculated by arithmetic difference of air temperature measured at
temperature	0.1 m and 1.1 m levels for seated occupants.
difference	b. Calculations for standing occupants shall be made for air temperature
	measured at 0.1 m and 1.7 m levels.
Mean radiant	a. Shall be measured at the 0.6 m level for seated occupants and the 1.1 m
temperature	level for standing occupants.
Operative	a. Shall be measured or calculated at the 0.6 m level for seated occupants and
temperature	the 1.1 m level for standing occupants.
Floor temperature	 Shall be measured at the surface by contact thermometer or infrared thermometer.
Radiant	a. Shall be measured in the affected occupants' locations, with the sensor
temperature	oriented to capture the greatest surface temperature difference.
asymmetry	

* Mean value of these parameters at respective location shall be considered for calculating operative
 temperature

717 6.3. Indoor air quality

718 6.3.1.General:


719 Indoor air is considered to be healthy when the air does not contain contaminants in harmful concentrations 720 and is acceptable when the majority of people feel satisfied. A human being breathes about 12,000 litres 721 of air every day and is vital for our health. Exposure to hazardous airborne agents present in indoor spaces 722 causes adverse effects such as respiratory and cardiovascular diseases, allergy, and irritation of the

723 respiratory tract and possibly leads to cancer.

Main source of indoor air pollutants are from outdoor air, household cooking (especially cooking with biomass or frying), tobacco smoking, polluted ambient air, cleaning agents, resuspension of dust during the cleaning activities, construction materials & paints, copy machines & printers as well as other human activities. Respectively, ambient air pollutant sources are vehicle emissions, thermal power plants, biomass

528 burning, construction work, unattended debris, open sewage pipes, fossil fuel based power generators and

729 various industrial processes as seen in Figure 2.

732 733

730

731

- ____
- 735
- 736
- 737
- 738

739 6.3.2.Indoor air quality parameters Threshold values

Threshold values for select indoor air quality parameters in an occupied space for Class A, Class B andClass C are given in Table 5.

742 Table 5 Threshold values for indoor air quality parameters

Parameters		Units	Classification			
		Units	Class A	Class B	Class C	
	CO ₂	nnm	Ambient +	Ambient +	Ambient +	
		ppm	350	500	700	
Basic IAQ parameters	PM 2.5	µg/m³	<15	<25	<25	
	CO	ppm	<2	<9	< 9	
	TVOC					
	(equivalent to	µg/m³	<200	<400	<500	
	isobutylene)					
	PM 10	µg/m³	<50	<100	<100	
	CH ₂ O	µg/m³	<30	<100	-	
0	SO ₂	µg/m³	<40	<80	-	
Complementary IAQ parameters	NO ₂	µg/m³	<40	<80	-	
parameters	O ₃	µg/m³	<50	<100	-	
	Total Microbial	CFU/m ³	Indoor ≤	Indoor ≤		
	Count		ambient	ambient	-	
Occupant Satisfaction		%	90	80	-	

Note 1:Depending upon the building location, interiors and other local factors, pollutants that significantly
 affect human health should be also considered and corresponding threshold standard should be
 referred.

746 Note 2: In case the values of TVOC are higher than the specified threshold value as given in table 5,

747 individual VOCs shall be analysed. At least the following VOCs that are toxic and common in indoor

748 environments, need to be analysed.

749 Table 5a. Threshold value for various VOCs in IAQ

Parameter	Unit	Threshold value
Formaldehyde (HCHO)	µg/m³	30
Toluene	µg/m³	300
Acetone (2-propanone) (C_3H_6O)	µg/m³	
Benzene	µg/m³	3
Acetaldehyde	µg/m³	140
Epichlorohydrin (106-89-8)	µg/m³	3
Naphthalene (91-20-3)	µg/m³	9

750

In case a wider range of VOCs are analysed, the following threshold values should be used to evaluate
 the harmfulness of each VOC:

753

755 Table 5b: Threshold of VOCs for detailed analysis

Carbon disulfide	800 µg/m ³	Carbon tetrachloride	40 µg/m ³
Chlorobenzene	1000 µg/m ³	Chloroform	300 µg/m ³
Dichlorobenzene (1, 4-)	800 µg/m ³	Dichloroethylene (1,1)	70 µg/m ³
Dioxane (1, 4-)	3000 µg/m ³	Ethylbenzene	2000 µg/m ³
Ethylene glycon	400 µg/m ³	Ethylene glycon monoethyl ether	70 µg/m ³
Ethylene glycon monoethyl ether	300 µg/m ³	Ethylene glycon monomethyl	60 µg/m ³
acetate		ether	
Ethylene glycon monomethyl ether	90 µg/m ³	Hexane (n-)	7000 µg/m ³
acetate			
Isophorone	2000 µg/m ³	Isopropanol	7000 µg/m ³
Methyl chloroform	1000 µg/m ³	Methylene chloride	400 µg/m ³
Methyl t-butyl ether	8000 µg/m ³	Phenol	200 µg/m ³
Propylene glycol monomethyl ether	7000 µg/m ³	Styrene	900 µg/m ³
Tetrachloroethylene	35 µg/m³	Trichloroethylene	600 µg/m ³
(Perchloroethylene)			
Vinyl acetate	200 µg/m ³	Xylenes, technical mixture (m-,	700 µg/m³
		o-, p-xylene combined)	

756 The measurement duration shall depend on the parameter and type of space as defined below. IAQ

- measurements needs to be planned and executed based on the ISO 16000-1 and ISO 16000-32 standards,
 as appropriate.
- 759

- 760 6.3.3. Testing Methods of Indoor Air Quality parameters
- 761 IAQ measurements / monitoring shall be carried out as follows:
- 763 6.3.3.1. Sampling :
- The general sampling strategy shall be as defined in ISO 16000-1.
- For formaldehyde, the sampling strategy shall be as defined in ISO 16000-2.
- The sampling for TVOC shall be as defined in ISO 16000-5.
- The sampling for NO₂ shall be as defined in ISO 16000-15.
- 768 The sampling for CO₂ shall be as defined in ISO 16000-26.
- 769 Note:
- 770 It is not recommended to carry out the particulate matter or microbial count measurements in a rain fall season as the
- 171 low outdoor PM concentration and high microbial background contamination may skew the results and results do not represent the average indoor air conditions.
- 773 When IAQ measurements are carried out, the ventilation system shall operate in a 'normal' operation mode at least
- 774 previous 48 hours and during the measurement. Example: if the ventilation normally operates from 8 am to 6 pm with
- 50% speed, the previous two days this operation mode shall be followed and ventilation shall not be boosted or operated
 longer periods.
- 777
- 778 6.3.3.2. Measurement conditions:
- 779 IAQ measurements shall be carried out only after the flush out period of minimum 24 hours in a newly 780 constructed or refurbished space as the initial emissions of indoor impurities are much higher during that
- 781 period.
- 782 IAQ measurements and monitoring shall be carried out either following Path A or Path B:
- 783
- 784

785	6.3.3.3.	Path	A٠
105	0.0.0.0.	i aui	л.

786 Measurement of all basic IAQ parameters two times in each season, three times a day, example 787 morning 9-11 am, early afternoon 12-2 pm, late afternoon 3-5 pm, 18 results per year, all 788 complementary IAQ parameters twice a year three times a day, 6 results per year and 789 formaldehyde & microbial count measurements twice a year once a day, 2 results per year, all as 790 a short term measurement example 3-15 min average value. The methodology for measurements 791 at selected location shall be as defined below are as defined in Table 10.

793 6.3.3.4. Path B:

Continuous monitoring of basic IAQ parameters (CO in case of combustion) with results recorded
at least once an hour round the year, 8760 results per year), measurement of all basic IAQ
parameters once a year (to validate the continuous monitoring sensors), all complementary IAQ
parameters (and CO if not continuously monitored) twice a year three times a day (6 results per
year), and formaldehyde & microbial count measurements once a day (2 results per day), all as a
short term measurement.

800 801

792

 Table 10 Measurement location and conditions for indoor air quality parameters

Parameter	Measurement Methodology (Path A)	Measurement Methodology (Path B)
CO ₂ *	 a. Shall be measured when there is minimum 90% of occupants present. b. Shall be measured at least in one location per floor and wing or in one location for each set of rooms with the same activity. C. For A Class - Measurement twice in each season, three times a day (e.g. morning 9-11 am, early afternoon 12-2 pm, late afternoon 3-5 pm) (18 results per year) For B & C Class - measured twice a year three times a day (6 results per year), all as short term measurements 	 a. Continuous monitoring with results recorded at least once an hour round the year (8760 results per year) b. At least one continuous monitoring location per floor or in one location for each set of rooms with the same activity c. Lab Measurement once a year (to validate the continuous monitoring sensors) d. Historical data should be available for at least previous 3 months ** (recommended to keep data for continuous improvement)
со	a. Shall be measured at the outdoor air intake in to the building (AHU air intake or air vent or open window) to ensure that the air intakes are not too close to roadways, loading docks or other local sources of CO.	a. Continuous monitoring with results recorded at least once an hour round the year (8760 results per year) ONLY if combustion activity present in building

	 b. For underground car parking in the building, the measurement shall also be done in occupied spaces at the floor level near the doorways leading to the car parking. c. For buildings with combustion devices, the measurement shall also be carried out in each space with combustion equipment while combustion device is in use. D. For A Class - Measurement twice in each season, three times a day (e.g. morning 9-11 am, early afternoon 12-2 pm, late afternoon 3-5 pm) (18 results per year) For B & C Class - measured twice a year three times a day (6 results per year), all 	 b. At least one continuous monitoring location per floor or in one location for each set of rooms with the same activity ONLY if combustion activity present in building c. Lab Measurement once a year (to validate the continuous monitoring sensors) if required d. For underground car parking in the building, the continuous monitoring shall be done in occupied space at the floor level near the doorways leading to the car parking space
PM 2.5*	 as short term measurements a. Shall be measured at least in three locations that are served with a same outdoor air intake unit / method as well as in the spaces with combustion devices. B. For A Class - Measurement twice in each season, three times a day (e.g. morning 9-11 am, early afternoon 12-2 pm, late afternoon 3-5 pm) (18 results per year) For B & C Class - measured twice a year three times a day (6 results per year), all as short term measurements 	 a. Continuous monitoring with results recorded at least once an hour round the year (8760 results per year) b. At least one continuous monitoring location per floor or in one location for each set of rooms with the same activity c. Lab Measurement once a year (to validate the continuous monitoring sensors) d. Historical data should be available for at least previous 3 months ** (recommended to keep data for continuous improvement)

PM 10*	 a. Shall be measured at least three locations that are served with a same outdoor air intake unit / method as well as in the spaces with combustion devices. B. To be measured twice a year three times a day (6 results per year), all as short term measurements 	 a. Continuous monitoring with results recorded at least once an hour round the year (8760 results per year) b. At least one continuous monitoring location per floor or in one location for each set of rooms with the same activity c. Lab Measurement once a year (to validate the continuous monitoring sensors) d. Historical data should be available for at least previous 3 months (recommended to keep data for continuous improvement) OR Same as Path A
	a. Shall be measured at least in one	Same as Path A
CH ₂ O**	 B. measurements twice a year once a day (2 results per year), all as a short term 	Same as Path A
	measurement.	
SO ₂	 a. Shall be measured at the outdoor air intake in to the building (AHU air intake or air vent or open window). b. In case values of SO₂ concentration are higher than the specified threshold value as given in section 6.3.2 at air intake, additional measurements need to be taken inside the space. 	Same as Path A
NO ₂	 a. Shall be measured at the outdoor air intake in to the building (AHU air intake or air vent or open window). b. In case values of NO₂ concentration are higher than the specified threshold value as given in section 6.3.2 at intake, additional measurements need to be taken inside the space. 	Same as Path A
O ₃	a. Shall be measured at the outdoor air intake in to the building (AHU air intake or air vent or open window).	Same as Path A

	 b. Shall be measured in the indoor spaces that have sources of internal generation of ozone. c. In case values of O₃ concentration are higher than the specified threshold value as given in section 6.3.2 at air intake, additional measurements need to be taken inside the space. a. Shall be measured at least in 2 locations per floor and wing or in one location for each set of rooms with the similar activity, one measurement in the perimeter zone (within 1.5 m from the 	 a. Continuous monitoring with results recorded at least once an hour round the year (8760 results per year) b. At least one continuous monitoring location per floor or in one location for
TVOC	 b. In case the values of TVOC are higher than the specified threshold value as given in section 6.3.2, at least the individual VOCs listed in appendix X recommended to be analysed and the threshold values given in Appendix <i>X</i>. 	each set of rooms with the same activity c. Lab Measurement once a year (to validate the continuous monitoring sensors) d. Historical data should be available for at least previous 3 months (recommended to keep data for continuous improvement OR Same as Path A
Total Microbial Count [#]	 a. Shall be measured in spaces where there are visible signs of moisture damage or where there is a high risk of water leakage. B. measurements twice a year once a day (2 results per year), all as a short term measurement. 	Same as Path A

* Reference value shall be measured near the air intake in to the building (AHU air intake or air vent or open window) for comparison and to find source of contaminate. This shall be done simultaneously (within 2 hours) with corresponding indoor air measurements.

** Measurements shall also be taken in locations where the most extreme values of the thermal parameters
 are observed or estimated to occur (e.g., potentially occupied areas near windows, diffuser outlets, corners,
 and entries).

810 # Above point in * and ** are applicable.

814 6.3.3.5. Test method and measurement:

The testing for various IAQ elements shall be done as per the reference standard specified below. The
 measurement equipment, accuracy, uncertainty of measurement shall conform to requirement as specified

817 in the standards below.818 Table 11a: IAQ Parameter

IAQ element	Test method	
CO ₂	ISO 16000-26 Sampling strategy for Carbon dioxide (CO ₂);	
	Note: Except for the screening measurement using sampling tubes, the CO_2	
	concentration is recorded continuously using an automatic instrument.	
CO	Annex C of ISO 16000-26 Sampling strategy for Carbon dioxide (CO ₂);	
	Note: Except for the screening measurement using sampling tubes, the CO_2	
	concentration is recorded continuously using an automatic instrument.	
NO ₂ ISO 16000-15 Sampling strategy for Nitorgen dioxide (NO ₂);		
Formaldehyde	ISO 16000-3: Determination of formaldehyde and other carbonyl compounds in	
	indoor air and test chamber air – Active sampling method or	
	ISO 16000 – 4: Determination of formaldehyde – Diffusive sampling method	
VOCs	ISO 16000 – 6: Determination of volatile organic compounds in indoor and test	
	chamber air by active sampling on Tenax TA® sorbent, thermal desorption and gas	
	chromatography using MS or MS-FID	
O ₃	ISO 13964 : Determination of Ozone in ambient air – Ultraviolate photometric	
	method	
PM 10 and	ISO 16000-34: Strategies for the measurement of airborne particles	
PM 2.5		

PARAMETER	SENSOR QUALITY SPECIFICATIONS FOR PATH B		
	Data Output Interval - 10 Minutes for each reading max		
	Operating Temp Range: 0-40 degrees C		
	Operating Range of RH - 10-85% (non condensing)		
	Measurement Range : 400ppm - 5000ppm		
CO2	Resolution : 5 ppm maximum		
	Accuracy: 400 - 2000ppm : ±5%		
	2000 - 5000ppm : ±5%		
	Lower Detection Limit - 400ppm		
	Recalibration capability – Required		
	Data Output Interval - 1 Minutes for each reading max		
	Operating Temp Range: 0-40 degrees C		
	Operating Range of RH : 10-85% (non condensing)		
со	Measurement Range from : 0ppm till 1,500ppm		
	Resolution: 1 ppm maximum		
	Accuracy: 2% of reading		
	Lower Detection Limit - 0ppm		
	Recalibration capability – Required		

1	
	Data Output Interval - 10 Minutes for each reading max
	Operating Temp Range: 0-40 degrees C
	Operating Range of RH - 10-85% (non condensing)
	Measurement Range: 0 ug/m ³ to 500 ug/m ³
PM2.5	Resolution : 1 ug/m ³
	Accuracy: 0 - 150 ug/m3 : ±5ug/m ³
	150 - 500 : ±5ug/m³
	Lower Detection Limit - 0 ug/m ³
	Recalibration capability – Required
	Data Output Interval - 10 Minutes for each reading max
	Operating Temp Range: 0-40 degrees C
	Operating Range of RH - 10-85% (non condensing)
	Installation - should have ability to install permanent
TUOC	Measurement Range: 150 ug/m ³ to 2000 ug/m ³
TVOC	Resolution of 10 ug/m ³
	Accuracy: 150 - 600 ug/m3 : ±20ug/m ³
	600 - 2000 : ±20ug/m ³
	Lower Detection Limit - 150 ug/m ³
	Recalibration capability – Required

- 833 6.4. Visual comfort
- 834 6.4.1.General
- 835 Light has significant impact on many bodily functions, including the nervous system, circadian rhythms,
- pituitary gland, endocrine system, pineal gland and alertness as these are affected by different wavelengthsof light.

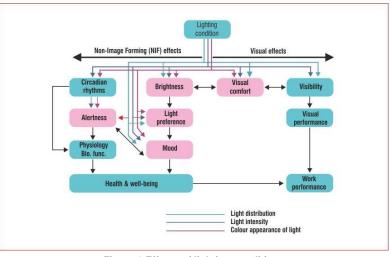


Figure 3 Effects of lighting condition

Variations over time in lighting conditions, in terms of intensity, illumination levels, distribution, ambient
 lighting and colour temperature, can stimulate alertness and well-being of people as shown in Figure 3.

- 843 Note: Details of the circadian rhythm are given in Annex C.1

853 6.4.2. Threshold values for visual comfort parameters

The threshold values of parameters affecting visual comfort are defined in Table 12. Threshold illuminance
level depending upon type of space is defined in Table 13.

856 Table 12 Threshold values of parameters for lighting comfort

Parameters Units Type of Classification		assification			
		Space	Class A	Class B	Class C
Illuminance	Illuminance sh task	ould be as	s per the value/ range o	defined in NLC 2010 at	the
Circadian Lighting Design (for workspaces)	Equivalent Melanopic Lux (EML)		At least 240 EML in regularly occupied spaces, through electric light only.	At least 150 EML in regularly occupied spaces, through electric light only.	
Uniformity of illuminance at Task area			0.7	0.7	0.7
Uniformity of illuminance at Immediate surrounding area			0.5	0.5	0.5
Illuminance of the immediate surrounding areas			As per the above tab	ble given in NLC 2010	
Percentage of the workstations meeting the required illuminance at task plane	%		100	90	90
Occupant Satisfaction	%		90	80	-
Controllability of lighting environment			Yes	Yes	No

861 Table 13 Threshold Illuminance level depending upon type of space

Building	Type of space	Illuminance (Lux)
Desidential	Living room	<mark>300</mark>
Residential	Bed room	100
Child care institutions	Child care institutions, Nursery schools	300
Child care institutions	Day nurseries	300
	Auditoriums	100
	Libraries	500
Places of assembly	Cinemas (Seating area)	200
	Court rooms	300
	Museums	300
	Retail shops	300
	Department stores	300
Commercial	Supermarkets	300
	Computer rooms, large	500
	Computer rooms, small	500
	Lobbies	100
Hotels	Reception rooms	300
Holeis	Hotel rooms (during night-time)	100
	Hotel rooms (during daytime)	100
	Small offices	300
Offices	Conference rooms	500
Offices	Landscaped offices (Open plan office)	500
	Office cubicles	500
	Cafeterias	300
Restaurants	Restaurants	300
	Kitchens	500
	Classrooms	300
Schools	Corridors	100
	Teacher rooms	300

Formatted: Font color: Auto, Highlight
Formatted: Highlight
Formatted: Font color: Auto, Highlight
Formatted: Highlight
Formatted: Font color: Auto, Highlight
Formatted: Highlight

872 Table 14: Instrumentation Specifications

Equipment	Purpose	Measurement	Meter Characteristics
Type		Uncertainty	
		and Range	
Illuminance	Establish	Uncertainty: 3%	<3% deviation from cosine
Meter	functional	<u>Range: ≤0. 1 fc</u>	function for reported single
	performance of	(0.01 lux) to	value or ≤10% at incidence
	baseline and new	<u>≥10,000 fc</u>	angle of 60° for multiple angle
	lighting equipment	(100,000 lux)	reported values. Spectral
			response within 10% of the CIE
			spectral luminous efficiency
			function

873 874

880

881

882

875 6.4.3. Measurement methodology - Illuminance grid

876 Grid systems shall be created to indicate the points at which the illuminance values are calculated and

- 877 verified for the task area(s), immediate surrounding area(s) and background area(s).
- 878 879 Grid cells approximating to a square are preferred, the ratio of length to width of a grid cell shall be kept

between 0,5 and 2. The maximum grid size shall be:

 $p = 0.2 \cdot 5\log_{10(d)}(1)$ where

			-
p	δ	10	m

883 d is the longer dimension of the calculation area (m), however if the ratio of the longer to the shorter

- 884 side is 2 or more then d becomes the shorter dimension of the area, and p is the maximum grid cell size 885 (m).
- 886 The number of points in the relevant dimension is given by the nearest whole number of d/p.
- 887 The resulting spacing between the grid points is used to calculate the nearest whole number of grid points
- 888 in the other dimension. This will give a ratio of length to width of a grid cell close to 1.
- 889 A band of 0.5 m from the walls is excluded from the calculation area except when a task area is in or
- 890 extends into this border area.
- 891 An appropriate grid size shall be applied to walls and ceiling and a band of 0,5 m may be applied also.
- 892 NOTE 1 :The grid point spacing should not coincide with the luminaire spacing.
- 893 NOTE 2 : Formula (1) (coming from CIE x005-1992) has been derived under the assumption that p is 894 proportional to log (d), where:
- 895 p = 0.2 m for d = 1 m;
- 896 p = 1 m for d = 10 m;
- 897 p = 5 m for d = 100 m.
- 898
- 899 900 Values of grid point spacing
- Typical values of grid point spacing are given in Table based on Formula above.
- 901 Table XX — Recommended number of grid points
- 902

Formatted: Centered, Line spacing: Multiple 1.15 li

Length of the area	Maximum distance between grid	Minimum number of grid points	+	Formatted: Centered, Line spacing: Multiple 1.15 li
	points			
<u>m</u>	M		•	Formatted: Centered, Line spacing: Multiple 1.15 li
0.40	0.15	3		Formatted: Centered, Line spacing: Multiple 1.15 li
<u>0.60</u>	<u>0.20</u>	<u>3</u>		
<u>1.00</u>	<u>0.20</u>	<u>5</u>	•	Formatted: Centered, Line spacing: Multiple 1.15 li
2.00	0.30	<u>6</u>		Formatted: Centered, Line spacing: Multiple 1.15 li
<u>5.00</u>	<u>0.60</u>	<u>8</u>		Formatted: Centered, Line spacing: Multiple 1.15 li
<u>10.00</u>	<u>1.00</u>	<u>10</u>		Formatted: Centered, Line spacing: Multiple 1.15 li
<u>25.00</u>	<u>2.00</u>	<u>12</u>	• \	
<u>50.00</u>	3.00	<u>17</u>	•	Formatted: Centered, Line spacing: Multiple 1.15 li
<u>100.00</u>	<u>5.00</u>	<u>20</u>		Formatted: Centered, Line spacing: Multiple 1.15 li
				Formatted: Centered, Line spacing: Multiple 1.15 li

903

904 Measure and Record Illuminance

Schedule and take all measurements to minimize the effects of other light sources and location
 conditions on the results.

907

908 • Schedule measurements for both baseline and post-installation when there is no daylight in the space.

909 This typically requires taking measurements after sunset. Adjacent electric lighting need not be blocked or

910 turned off as long as it is noted and remains the same for both the baseline and the post-installation

911 measurements.

912 • Ensure that potential temporary obstructions such as occupants, temporary materials, and furniture are

913 removed for both the baseline and the post-installation measurements.

Formatted: Font: (Default) Arial, 10 pt

Formatted: Centered, Line spacing: Multiple 1.15 li

926 6.5. Acoustic comfort

927 6.5.1.General

942 943

944

945 946

928 Sound is a pressure fluctuation in the air. In general, the greater the amplitude of the pressure 929 fluctuation, the "louder" the sound will be perceived by people. Loudness is a subjective measure 930 of the amplitude that varies from one person to the next and will depend on many parameters, 931 some of which are nonphysical. Sound pressure level is this objective measure. The total ambient 932 sound that exists at a given point in space is usually due to a composite of many different sounds 933 with different strengths and frequency content. The composite sound may be a combination of 934 background noise and sound from a single identifiable source; it may be a combination from several 935 individual sources; and it may include reflections from room surfaces or reflecting objects. This 936 standard is primarily concerned with the measurement of the level of the composite sound at a 937 given point or in measuring changes in that level caused by a certain sound of interest. The 938 acoustical parameters such as Nose criteria, Reverberation time and Speech transmission index 939 are representative of acoustical comfort. 940

941 6.5.2. Threshold values for acoustical parameters

Threshold values for acoustical parameters for typical space are given in Table 13 . Additionally, values for the acoustical parameter - Noise isolation (applicable for Class A) are given in Table 14. The noise criterion (NC) values shall be arrived using NC curves as given in 6.3.3.

No	Types of Buildings	Nois	Noise Criterion Reverberation time			Speech Transmission Index				
		Α	В	С	Α	В	С	Α	В	С
1	Residences, Apartments, Condominiums	30	35	40	<0.8s	NA	NA	*0.6	*0.5	*NA
								Applicable for Atriums & corridors		
2	Hospitality	-			-					
	Individual rooms or suites	30	35	40	<0.8s			0.6	0.5	NA
	Meeting / banquet rooms	30	35	40	<0.5s	<0.6s	<1.0	0.7	0.6	0.5
	Corridors, lobbies	40	45	45	NA			NA	NA	NA
	Service / Support areas	40	45	50	NA			0.5	NA	NA
	All day dining and restaurants	45	50	50	<1.2s	<1.5s	<1.75 s	0.6	0.5	NA
3	Office buildings									
a	Executive and private offices	30	35	40	<0.6s	<0.7s	<0.8s	0.6	0.5	NA
b	Conference rooms	30	35	35	<0.6s	10.15	~0.05	0.7	0.6	0.5

Table 13 Requirements of Acoustic comfort

C.	Teleconference rooms	2	5 (max)	<0.6s			0.7	0.6	0.5
d.		35	40	40	<0.8s			0.6	0.5	NA
e.	Corridors and lobbies	40	45	45	NA			NA	NA	NA
f.	Collaborative space				<0.8s			0.5	NA	NA
g.	Cafeteria/Town Hall	40	45	45	<1.0s	<1.2s	<1.2s	0.6	0.5	NA
4	Education									
a.	Class rooms up to 70 m ²	4	0 (max)				0.6	0.5	NA
b.	Class rooms over 70 m ²	3	5 (max)	<0.6s	<0.8s	<1.0s	0.6	0.5	NA
C.	Large lecture rooms, without speech amplification	3	5 (max)		10.00	1.00	0.6	0.55	0.5
5	Libraries	35	40	40	<1.0s	<1.2s	<1.2s	0.6	0.5	NA
6	Health care*									
a.	Open Ward	35	35	45	<1.0s			0.7	0.6	0.5
b.	Individual rooms or suites	30	35	40	<0.8s			0.7	0.6	0.5
c.	Meeting rooms / Conference room	25	30	35	<0.6s	<0.8s <1.0s	<1.0s	0.5	NA	NA
d.	Teleconferencin g rooms	25	NA	NA	<0.6s			0.7	0.6	0.5
e.	Operating Rooms	35	40	45	<0.8s			0.6	0.5	NA
f.	Corridors, lobbies	35	45	45	<1.0s			NA	NA	NA
g.	Testing/research lab, minimal speech	45	50	55	<0.8s			0.5	NA	NA
h.	Research lab, extensive speech	40	45	50	<0.8s			0.7	0.6	0.5
i.	Auditoria, large lecture rooms	25	30	NA	< 0.8s			0.6	0.5	NA

947 948

Note 1: In this table are given the performance requirements in terms of recommended dBA noise level (ideal), the not to exceed noise level (max), and the maximum acceptable reverberation time (T60) for many spaces including 949 offices.

Note 2: For the Class A and Class B, a building should score 90% and 80% respectively on the occupant satisfaction
 survey. There is no such requirement to achieve Class C.

Note 3: Any other type of space not mentioned in the Table 14 shall meet requirements of the nearest representative
 category of that space.

954 Note 4: For more details on Reverberation Time, refer graph with respect to volume & application in annexure

955 Note 6 : * values measured in unoccupied condition

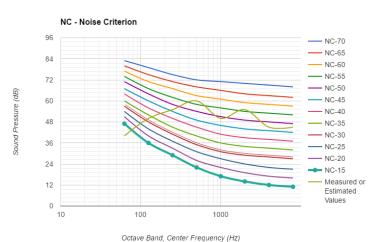
Table 14 Threshold Noise Isolation Criteria level depending upon type of space				
Building	Type of space	Dw / NIC		
	Between two offices	38dB		
Office	Where privacy is important	48dB		
	Cellular offices	40dB		
Residential	Partitions separating a water closet (WC) from a noise sensitive room	38 dB		
Hospitality	Partitions and floors between rooms and corridors	50 dB		
	Patient Room to Patient Room / Public Space	40 dB		
	Patient Room to Service Area	50 dB		
Hospital or Health	Patient Room to Corridor (with entrance)	25 dB.		
care*	Consultation Room to Public Space / Patient Rooms	40 dB.		
	Consultation Room to Corridor (with entrance)	25 dB.		

Note:

958 Weighted Level Difference (Dw) a single <u>integer</u> number found by comparing the measured spectrum with the 959 'standard' curves for airborne and impact insulation.

The Dw value is where the curve meets the 500 Hz curve and the unfavourable deviation is 32 dB. Dw will be identical to $D_{nT,w}$ when T = 0.5 seconds.

962 Noise Isolation Class NIC a single number rating of the degree of <u>speech privacy</u> achieved through the use of an
 963 acoustical ceiling and sound absorbing screens in an open office. NIC has been replaced by the <u>articulation class</u> rating
 964 method.


980 6.5.3.Estimating NC - Noise Criterion

981 For a measured noise spectrum as below:

Freq. Hz	62.5	125	250	500	1000	2000	4000	8000
dB	40	50	55	60	50	55	45	45

Plot the measured values on the NC Curve. The NC curve tangent to the value at 1000 Hz is NC - 57 as
 depicted in the graph below. Hence, the NC value = 57dB

990 6.5.4.The procedure for testing RT 60

- The sound source (Speaker) to be placed at 1.2m above the floor level and the pink noise of about 90dB was generated which was provided with the analyser (sound level meter).
- The analyzer is calibrated by using 1000Hz calibrator before starting the measurement in order to eliminate minor errors due to instrumentation.
- The analyser to be placed at the height of 1.2m from the floor level with face of the mic head perpendicular to the sound source face for grazing incidence. The loudspeaker and microphone/analyser are all in the same line.
- 4. The files of each measurement shall be stored and recorded.
- 5. The recorded files shall be processed to give a final report of measurement.

1000 Note: For the small rooms the ideal point to measure the Reverberation Time (RT) is at the center of the 1001 room/area.

1010	6.5.5.The proce	edure for testing the Impact sound isolation L'nTw
1011	The measurem	nent shall be done as defined in ISO 140-7:
1012	a.	The equipment shall comply with as defined in ISO 140 - 7.
1013	b.	The standard tapping machine shall be mounted on a horizontal platform with legs in line
1014		with the floor.
1015	С.	The test procedure and evaluation shall be in accordance with Clause 5 of ISO 140 - 7
1016	d.	A standardized impact sound generator shall be used, consisting hammers of standardized
1017		weight that drop from a standard height at a standard repetition rate.
1018	e.	The vibration from the tapping machine is transmitted through the building structure into
1019		the air in the receiving room. This sound level (L2) is measured and compared to building
1020		regulation after correction for reverberation time (T2) and possible influence of background
1021		noise (B2).
1022	f.	The tapping machine shall have 5 hammers each weighing 500 g and dropping from a
1023		height of 40 mm every two seconds, giving an operating frequency of 10 Hz.
1024	g.	The tapping machine should be placed minimum at 1meter away from the perimeter of the
1025	-	specimen to be tested.
1026	h.	The results shall be presented in accordance with ISO 140 - 7.
1027	i.	The impact sound levels measured in the receiving room must be normalised using a
1028		reference equivalent absorption area (A) of 10 m ² .
1029	j.	A single figure rating (L'nT,w) shall be calculated in accordance with ISO 717-24.
1030		
1031		
1032	6.5.6. Procee	dure for testing the Speech Transmission Index
1033	a.	The test shall use the speakers existing in the room and the Speech Transmission Index
1034		Public Address system (STIPA) of about 100dB generated and is provided with the sound
1035		level meter.
1036	b.	The analyser to be placed at the height of 1.2m from the floor level with face of the
1037		microphone head perpendicular to the sound source face for grazing incidence. The
1038		loudspeaker and microphone shall have to be placed on same line.
1039	С.	The testing shall be carried out at different places in the hall.
1040		
1041		te: The Sound level meter is calibrated by using 1000Hz calibrator before starting the measurement in
1042	ord	der to eliminate minor errors due to instrumentation.
1043		
1044		
1045		
1046		
1047		
1048		
1049 1050		
1051 1052		
1052		
1055		
1054		
1055		
1050		
1057		
1000		

1059	7.	Occupant satisfaction survey	1

1060 7.1. General

1061 Subjective methods quantify the responses of occupants to an environment using subjective scales. Such 1062 scales are based upon psychological continua (or constructs) that are relevant to the psychological 1063 phenomenon of interest. It is important to know the properties of the scales in order to correctly interpret 1064 the results. Scales of sensation (e.g. hot or cold), preference, comfort, annoyance, smell and stuffiness are 1065 often used in occupant comfort assessment.

1066Advantages of subjective methods are that they are simple to administer and are directly related to the1067psychological phenomenon. Many aspects of occupant comfort, which are difficult to quantify or cannot be1068directly measured such as glare, smell, but are very important for evaluating occupant comfort, can be1069covered through such surveys.

1070	The following are the minimum questions required for gaining feedback for the long term satisfaction of
1071	occupants for thermal comfort, indoor air quality, lighting comfort and acoustic comfort in the building.

1072 7.2. Survey Questions

1073 1. Personal details :

1074	a. Please specify your gender
1075	Male / Female
1076	b. Please specify your weight (kg)
1077	40 – 50; 51 – 60; 61-70; 71 – 80; 81 and above
1078	c. Please specify your age
1079	21 – 25; 25 – 30; 31 – 35; 36 – 40; 41 – 45; 45 – 50; 51 – 60; 61 and above
1080	d. Please specify your height
1081	Below 150 cm; 151 cm – 160 cm; 162 cm – 170 cm; 171 cm and above
1082	e. Please specify your residing years in present city: 1 year / 2 years / 3 years / >3 years
1002	
1083	8. Please rate your satisfaction with temperature conditions of your normal work area.
	1 2 3 4 5 6 7
1084	Unsatisfactory Satisfactory
1085	9. Please rate your satisfaction with local thermal discomfort conditions of your normal work area
1086	(e.g. vertical air temperature difference between feet and head, local convective cooling, hot or cold floor).
1087	Unsatisfactory
1007	onsaislatory calibratory
1088	10. Please rate your satisfaction with the air movement available to you in your normal work area.
	1 2 3 4 5 6 7
1000	
1089	Unsatisfactory
1090	11. Please rate your satisfaction with the overall humidity in your normal work area.
1091	Unsatisfactory
1091	Offsatisfactory Satisfactory
	43
	10

	staleness).
1094	Unsatisfactory
1095	13. Odours in your normal work area.
1096 1097 1098	Unsatisfactory 1 2 3 4 5 6 7 Satisfactory 14. Please rate your satisfaction with fresh air in your normal work area.
1099 1100	Unsatisfactory
1101	15. Your work area's layout enables you to work without unwanted noise interruptions.
1102 1103 1104	Disagree Agree 16. Your normal work area provides adequate sound privacy (not being overheard by others).
1104	
1104	Disagree Agree
	1 2 3 4 5 6 7
1105	1 2 3 4 5 6 7 Disagree Agree
1105 1106	Disagree Agree Agree 17. Please rate your satisfaction with the overall noise in your normal work area.
1105 1106 1107	1 2 3 4 5 6 7 Disagree Agree 17. Please rate your satisfaction with the overall noise in your normal work area. 1 2 3 4 5 6 7 Unsatisfactory Satisfactory
1105 1106 1107 1108 1109 1110	1 2 3 4 5 6 7 Disagree Agree 17. Please rate your satisfaction with the overall noise in your normal work area. 1 2 3 4 5 6 7 Unsatisfactory 1 2 3 4 5 6 7 18. Please rate your satisfaction with regard to acoustical privacy in enclosed rooms 1 2 3 4 5 6 7 Unsatisfactory 1 2 3 4 5 6 7 Satisfactory 18. Please rate your satisfaction with overall noise level in common areas like cafeteria, breakout area, 18. Please rate your satisfaction with overall noise level in common areas like cafeteria, breakout area,
1105 1106 1107 1108 1109	1 2 3 4 5 6 7 Disagree Agree 17. Please rate your satisfaction with the overall noise in your normal work area. 1 2 3 4 5 6 7 Unsatisfactory 1 2 3 4 5 6 7 18. Please rate your satisfaction with regard to acoustical privacy in enclosed rooms 1 2 3 4 5 6 7 Unsatisfactory 1 2 3 4 5 6 7 Satisfactory Satisfactory Satisfactory Satisfactory 1 1 2 3 4 5 6 7

1092 12. Please rate your satisfaction with the overall air quality in your normal work area (e.g. stuffiness, staleness).

1115 1116	19. Please rate your satisfaction with regard noise from machineries (AHU,HVAC ducts, AC units, chillers, DG, Serversetc)
	1 2 3 4 5 6 7
1117	Unsatisfactory
1118	20. Please rate your satisfaction with the lighting level on workplane/ table top.
1110	
1119	Unsatisfactory Satisfactory
1120 1121	21. Do the lighting fixtures cause direct or indirect (reflections in computer screen) glare at your workstation? Please rate your experience
	1 2 3 4 5 6 7
1122	1 2 3 4 5 6 7 High Glare (Irritating) No glare (very comfortable)
1123	22. Within your field of view do you see lot of contrast difference (bright and dark surfaces).
	1 2 3 4 5 6 7
1124 1125	Yes (lot of bright and dark patches No (well balanced brightness of surfaces)
1126 1127	20. Please rate your satisfaction with the lighting comfort of your normal work area (e.g. amount of light, glare, reflections, contrast).
	1 2 3 4 5 6 7
1128	Unsatisfactory
1129	21. Please rate your satisfaction with the external view from your normal work area.
1130	Unsatisfactory Satisfactory
1131 1132	22. Please rate your satisfaction with lighting controls in your normal work area (provisions of controls for blinds on windows or provision of dimming or controlling lighting equipment in the room)
1133	Unsatisfactory
1134 1135	23. Please rate your satisfaction with the access to daylight from your normal work area.
1136 1137	Unsatisfactory
	45

1138 8. Documentation methodology

1139

1140 8.1. Report format

	Name of the project	
1141	Table 15 - The measurement report	t shall contain following information:

Name of the project			
Name of the responsible person			
Location of the project/ Project address			
Sampling time			
Sampling date			
Building type	Commercial ()	Residential ()	Mixed ()
Building usages		1	
Schedule (usage)			
Building	Naturally Ventilated ()	Air Conditioned ()	Mixed Mode ()
Year of construction		•	
No. of floors			
No. of occupants present at the time of sampling			
No. of sampling locations			
Floor plan of the building attached	Yes ()		No ()
Sampling locations marked on the floor plan	Yes ()		No ()
List of all the national or intern		d for IEQ assessment	:
Any observation about samplir	ig locations:		
Remark:			

1143 8.2. Format for reporting measured values of different parameters

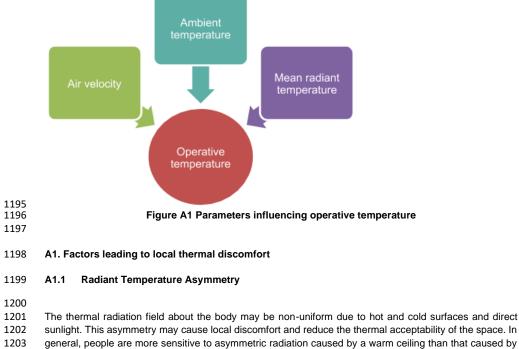
	Q Reporting format				
Element	Parameters	Measured values	Units	Classification (Class A / Class B/ Class C)	Remarks
	Air temperature				
	Air speed				
Thermal	Floor surface temperature (where applicable)				
Comfort	Radiant temperature asymmetry				
	Relative humidity				
	Operative temperature				
	Vertical air temperature difference				
	Carbon dioxide				
	PM 2.5				
	PM 10				
	Carbon Monoxide				
Indoor air qauality	Total Volatile Organic Compounds				
qauanty	Formaldehyde				
	Sulphur dioxide				
	Nitrogen dioxide				
	Ozone				
	Total microbial count				
	Illuminance				
	Circadian Lighting Design				
Lighting	Uniformity of illuminance*				
comfort	Illuminance of the immediate surrounding areas**				
	Percentage of the task area				
	meeting the required illuminance				
Acoustic	Noise Criteria (NC)				
comfort	Reverberation time				
comfort	Noise background				

1154 8.3. Format for reporting results of satisfaction survey

- 1155Occupant satisfaction survey presented in section 7.2, questions from 8 to 11, 10to 13, 14 to 16,115617 to 23 are to evaluate satisfaction level corresponding to thermal comfort, indoor air quality,1157lighting comfort and acoustic comfort respectively.
- 1158Care should be taken to avoid administering occupant satisfaction survey on a potentially biased1159subject who is not a regular occupant of the building, or have been under some medical treatment1160or any other similar reason. The survey must be administered to all occupants in a building and1161the response rate should be 40% of occupants surveyed. The survey designed to gain long term1162feedback should be administered before physical measurements are undertaken, and no changes1163should be made to the normal operation of the building between survey administration and1164physical measurement.
- 1165Questions are administered on a seven point scale where 1 is the worst and 7 is the best score.1166In each case the % of satisfied occupants is denoted as all those rating 4, 5, 6 and 7 on this1167scale. Where, there is more than one question under each category, the average satisfaction1168across all the constituent questions is to be considered.
- 1169For every element 90% and 80% satisfaction level should be met for building being classified as1170Class A and Class B respectively. Occupant satisfaction survey is not applicable to Class C1171building except when assessing humidity.
- 1172 Format for reporting results of satisfaction survey shall be following:

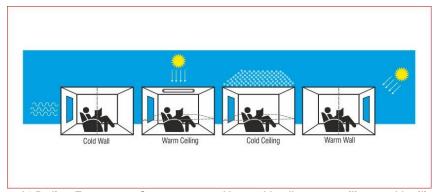
1173 Table 17: Occupant satisfaction survey report format

Elements	Occupant satisfaction (%)	Classification (Class A / Class B/ Class C)	Remarks
Thermal comfort			
Indoor air quality			
Lighting comfort			
Acoustic comfort			


1187	
1188	Annexure A
1189	Thermal comfort

A1. Calculation of Operative Temperature (to)

Operative temperature can be defined as uniform temperature of a radiantly black enclosure in which an


occupant would exchange the same amount of heat by radiation plus convection as in the actual non-uniform environment. It is the combined effect of the mean radiant temperature, air temperature and velocity

as shown in Figure 8. It is also known as dry resultant temperature or resultant temperature.

hot and cold vertical surfaces.

Radiant temperature asymmetry may occur in an enclosed space because of cold and warm walls as well as warm and cold ceiling. People are more sensitive to warm ceiling than other three.

 1208
 Figure A2 Radiant Temperature Symmetry caused by a cold wall, a warm ceiling, a cold ceiling, or

 1210
 a warm wall

 1211
 1211

1212 A1.2 Vertical Air Temperature Difference and floor surface temperature

As demonstrated in Figure A3, an individual may feel local discomfort when temperature difference between
 warm head and cold feet increases beyond defined limit in Table 2. Occupants may also feel discomfort in
 the enclosed spaces where floor is colder or warmer than defined limit. It is applicable only when a person
 is wearing light indoor shoes

Figure A3 Local thermal discomfort caused by vertical air temperature difference (left) and floor surface temperature (right)

1224 A1.3 Measurement Sensor location for thermal comfort

1225For the measurement of thermal comfort for sitting position and standing position of the occupant, the1226measurement probes shall be located as shown in Figure A4.

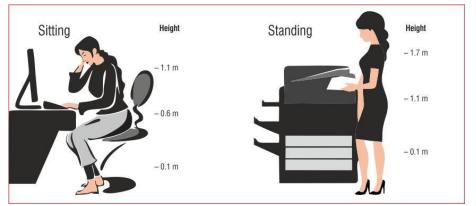


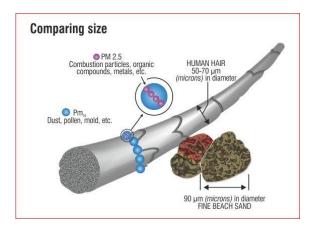
Figure A4 Position of the probes at different height according to standing and sitting position

1230			
1231			
1232			
1233			
1234			
1235			
1236			
1237			
1238			

1239Annexure B1240Indoor air quality

1241 B.1 Definition of Indoor Air Pollutants

1242 B1.1 Carbon dioxide (CO₂)


1243 Carbon dioxide (CO₂) is a colourless, odourless gas vital to life on Earth. Carbon dioxide exists in the Earth's
1244 atmosphere as a trace gas at a concentration of about 0.045 percent (450 ppm) by volume.
1245

Main source of CO₂ in buildings is people. CO₂ in indoor air is not itself a pollutant or a health risk in typical
indoor concentrations. However, high levels of CO₂ reduce human comfort and productivity significantly.
CO₂level, that is relatively easy to measure and is used as a general indicator of ventilation system
efficiency.

1250 B1.2 Respirable Suspended Particulate Matter (RSPM)

Respirable Suspended Particulate Matter (RSPM) refers to those dust particles that are small enough (less
 than 10 μm) to penetrate the nose and upper respiratory system and deep into the lungs. Smaller the
 particulate size is, higher is the health risk as the smaller particulates penetrates deeper into alveoli.

1254 Respirable Suspended Particulate Matter (RSPM) is one of the main ambient air pollutants in India. Main 1255 sources of particulate matter are vehicle emissions, household cooking (especially cooking with biomass 1256 and frying), thermal power plants, biomass burning, construction work, unattended debris, fossil fuel (such 1257 as diesel) based power generation and various industrial processes.CO₂ shall also be measured at ambient 1258 to find threshold values as specified in the standard.

1259 1260

1261 Figure B1 Comparison of PM size with human hair diameter and beach sand particle size

- 1262 1263
- ____
- 1264

1265 B1.3 Carbon Monoxide (CO)

- 1266 Carbon monoxide (CO) is a colourless, odourless and tasteless gas that is slightly less dense than air.
- 1267 Main source of CO are vehicles (combustion engines), fuel-burning appliances (e.g. furnaces, chullahs, 1268 gas stoves, cooking ranges, fossil fuel based water heaters, gas and kerosene room heaters), diesel
- 1269 generators, fireplaces and charcoal that is burned in enclosed areas.
- 1270 CO is toxic to humans when encountered in concentrations above about 35 ppm. It is a serious health risk 1271 and may cause an immediate death.

1272 B1.4 Total Volatile Organic Compounds (TVOC)

1273 Sum of the concentrations of identified and unidentified volatile organic compounds eluting between and 1274 including n-hexane and n-hexadecane.

1275 The main sources of TVOC in buildings are furniture, construction materials, paints and cleaning products.
 1276 Sometimes human activities and office equipmentalso increases the VOC level.

1277 The prevalent TVOCs in indoor air are typically Formaldehyde, Benzene, Toluene, Ethylbenzene, O 1278 xylene, Dodecane, Limonene, and Halogenated hydrocarbons. However, there are hundreds of other VOC
 1279 that may reduce the indoor air quality. In case, TVOC level is high, more detailed analysis are required to

1280 find out which specific TVOC concentrations are high.

1281 B1.5 Formaldehyde (CH₂O)

1282 Formaldehyde (CH₂O) is a colourless gas with a pungent odour and is highly reactive. Formaldehyde occurs 1283 in indoor air often due to the use of certain wood-based construction boards and furnishing. Increased 1284 concentrations may also be caused by other products, like certain disinfectants, cleaning agents, adhesives 1285 and paints. Table 13 provides overview of the most important formaldehyde sources in the indoor 1286 environment.

1287 Inhalation exposure to Formaldehyde in humans can result in respiratory symptoms as well as eye, nose,1288 and throat irritation.

1289 In high humidity and temperature, Formaldehyde emission increases considerably. Therefore, the relativehumidity and air temperature needs to be measured simultaneously.

1291 1292 1293

Table B1 Sources of Formaldehyde in indoor environment

The following standards need to be followed when measuring CH_2O : ISO 16000 – 2, 3 and 4, as appropriate.

Source	Examples for use		
Adhesive, glue	Wallpaper pastes; gluing tiles, veneer, panelling, carpets and vinyl		
Adhesive, glue	floor		
Combustion processes	Gas stove operation		
Disinfectants	Sprays and solutions for surface disinfection		
Internal combustion engines ^a	Transportation		
Particle board and other	Walls (outdoors and indoors), ceilings, false ceilings, floors,		
pressed - wood products	baseboards, doors and doorframes, stairs, plywood panelling,		
pressed - wood products	furniture		
Tobacco	Tobacco smoke		
Treated textiles	Furnishings		
Urea-formaldehyde foams	Wall cavity insulation, roof insulation		
Wallpaper, lacquers,	Interior decoration		
varnishes, paints			
^a Might be important with heavy	^a Might be important with heavy traffic		

1294 B1.6 Ozone (O₃)

1295 A triatomic compound, very reactive form of oxygen that is bluish irritating gas of pungent odour. It is a 1296 major air pollutant in the lower atmosphere but a beneficial component of the upper atmosphere, and used 1297 for oxidising, bleaching, disinfecting, and deodorising.

1298

Ambient ground level Ozone (O₃) is not emitted directly into the air, but is created by chemical reactions
 between oxides of nitrogen (NO_x) and volatile organic compounds (VOC) in the presence of sunlight. Inside
 the building some equipment like copiers and printing machines, some room air purification technologies
 (e.g. ionization, some UV-lights and ozonisers) produce Ozone. Ozone levels are typically highest on hot,
 sunny days.

Even relatively low levels of Ozone can cause health effects. Breathing Ozone can trigger a variety of health
problems including chest pain, coughing, throat irritation, and congestion. It can worsen bronchitis,
emphysema, and asthma. Ground level ozone also can reduce lung function and inflame the linings of the
lungs. Repeated exposure may permanently scar lung tissue.

1308

Ozone shall also be measured in spaces that have equipment producing ozone. Best time for Ozone
 measurement is during summer (sunny and warm days). The Ozone shall be measured as per IS 5182 –
 Part 9.

1312 B1.7 Sulphur dioxide (SO₂)

Sulphur dioxide (SO₂) is a highly reactive and toxic gas with a pungent, irritating and rotten smell. The largest sources of SO₂ emissions are from fossil fuel combustion at power plants and other industrial facilities. Other sources include industrial processes such as extracting metal from ore, and the burning of high sulphur containing fuels by locomotives, large ships, and non-road equipment. SO₂ can react with other compounds in the atmosphere to form small particulates.

1318 Short term exposures to SO₂ (up to 24 hours) can cause adverse respiratory effects including bronchiolitis 1319 and increased asthma symptoms. Particulates carrying SO₂ penetrate deeply into sensitive parts of the 1320 lungs and can cause or worsen respiratory disease, aggravate existing heart disease and may lead to 1321 premature death.

Emissions that lead to high concentrations of SO₂ generally also lead to the formation of other oxides of
 Sulphur (SO_x). Therefore SO₂ is used as the indicator for the larger group of gaseous sulphur oxides.

SO₂ shall be measured in the air intake in to the building (each AHU air intake or air vent or open window). At
air intake, for values of SO₂ concentration higher than the specified threshold value as given in section
6.2.2, additional measurements need to be taken inside the space.

1327 The following standards needs to be followed when measuring SO₂: IS 5182 – part 2, as appropriate.

1328 B1.8 Nitrogen dioxide (NO₂)

1329 Nitrogen dioxide (NO₂) is one of highly reactive gasses known as oxides of Nitrogen (NO_x). Other nitrogen
 1330 oxides include nitrous acid and nitric acid.

1331

The major source of NO₂ is high temperature combustion as in vehicles and power plants. NO₂ react with
 ammonia, moisture, and other compounds to form small particulates. Ozone (O₃) is generated when NO₂
 and VOCs react in the presence of heat and sunlight.

1335 Even short term NO₂ exposures (less than 24 hours) can cause adverse respiratory effects including airway

1336 inflammation in healthy people and increased respiratory symptoms in people with asthma.

NO2 shall be measured at air intake to building, (e.g. AHU air intake, air vent, open window) and after the
 filters in case of mechanical ventilation. The measurement inside the building shall be done in two locations
 one near the main doors and the other one in the main occupied area.

1340 - One field the main doors and the other one in the main occupied area.

1341The following standards needs to be followed when measuring NO2: ISO 16000-15 and IS 5182 - part 6,1342as appropriate.

1343

1344 B1.9 Total Microbial Count

1345 It is a quantitative measurement of the number of colony forming units of micro-organisms in 1 cubic1346 metre sample of air.

1347 One of the major purposed of the microbial count measurement is to compare indoor and outdoor air 1348 samples and find any visible or hidden mould growth. Therefore, it is important to use same method for 1349 both measurements and carry them out at the same time. Due to differences in sampling times, volumes. and principles, the results given by different devices and methods are not comparable. Several air samples 1350 1351 needs to be collected in different parts of the building and at different times. The outdoor air samples, that 1352 are collected simultaneously with each indoor air sample (same day and in same weather conditions), are needed for comparison. The air handling unit or ventilation system may be a source of microbiological 1353 1354 contamination. Therefore in each measurement zone, one sample shall be collected from the supply air 1355 near the terminal unit. 1356 When there is dampness and mould in a building, airborne fungal and bacteria concentrations of indoor air

are often (but not always) higher than the concentrations in ambient air at the same time. For fungal spores
 and bacteria, the seasonal variation is considerable. Therefore measurements shall be taken only during
 summer and winter months.

1361There are no established health-based guidelines or standards for fungal or bacteria concentrations in the1362indoor air because different types of fungi or bacteria may have different health effects. There is also not1363enough research of "healthy" buildings during different seasons available in India to give India specific1364target values for fungal count levels. Furthermore, there are no uniformly accepted or valid, quantitative1365environmental sampling methods with which to assess exposures to mould and other agents associated1366with damp indoor environments.

1368Relative humidity measurements are recommended together with total microbial count measurements. The1369following standards need to be followed when measuring total fungal count: ISO 16000 – 16, 17, 18, 19, 201370and 21, as appropriate.

- 1371 Note: Even then measurements in different seasons or weather conditions cannot be compared.
- 1372 1373 1374

1360

1367

1385 B2. Important types of indoor environment and sources of air pollutants

Type of indoor environment	Emitting sources or processes (examples)
Private dwellings an	d living rooms
a. General sources	Man, building materials, furnishings, renovation materials, cleaning agents, biocide-containing products, ventilation and air-conditioning systems, outdoor air, heating appliances, microbial growth
b. Special areas	
Kitchens	
Living rooms,	Gas appliances, cooking, cleaning products
bedrooms, bathrooms	Tobacco smoke, fireplaces, biocide-containing products, cosmetics, disinfectants
Basements, hobby	Hobby activities, tobacco smoke, soil outgassing
rooms	Fuel, solvents
Garages	
Public buildings	
a. General sources	Man, building materials, furnishings, renovation materials, cleaning agents, biocide-containing products, ventilation and air-conditioning systems, outdoo air
b. Special areas	
Offices	Office machines and supplies
School and day care centers	Teaching materials, toys
Hospitals	Disinfectants, cleaning agents, anesthetics, sterilizing agents
Garages	Fuel, automobiles
Swimming pools	Outgassing from water
Transport vehicles	Fuel tanks, internal combustion engines, internal fitting materials, outdoor air

1396 B3. Sources of indoor air pollutants and their most important emissions

Ask this	Process/activity	Products used, sources in a narrower sense	Substances emitted
Biological sources			
People, domestic animals	Breathing		Carbon dioxide, water vapour, odours substances from food; bacteria and viruses
	Sweating		Water vapour. Odoriferous substances
	Digestion, excretion, skin scaling		Intestinal gases. Odoriferous substances and excrement, decomposition products or pathological excretions, bacteria and viruses, allergenic dust
Cockroaches, dust mites and other insects	Excretion		Allergenic dusts
Rats, mice and other pets	Excretion Loss of hair and scaling		Allergenic dusts, bacteria, viruses. Odoriferous substances Allergenic dust Terpenes and other odoriferous
House plants	Evaporation		substances, water vapour
Mould growth	Primary and secondary metabolism, spore release		Fungal propagules, bacterial cells and components, microbial VOC, mycotoxins
•	s, building equipment		
Building and materials	Product processing, outgassing, ageing, abrasion, decomposition	Building substances, building preservatives and corrosion prevention agents, insulating materials, sealing materials, paints, concrete additives	Various gaseous and particles, e.g. solvents, plasticizers, monomers, oligomers, wood preservatives, flame-proofing agents, fibres (asbestos, minerals wool), radon (e.g. from granite), amines and ammonia
		Scrubbers, filters, insulating and sealing	

Ventilation and air-conditioning system	Product processing, renovation, outgassing	materials, deposits, heat exchangers Furniture, floor coverings, domestic textiles, paints and varnishes, wall coverings	Microorganisms (e.g. legionella), biocides, fibres, odoriferous substances
Room furnishings	Product processing, renovation, outgassing		Monomers and oligomers from plastics, resins, surface coatings, adhesives (e.g. formaldehyde), fibres, solvents, plasticizers, stabilizers, biocides
Indoor activity			
Cooking and heating appliance	Combustion processes (heating, cooking), open fires	Coal, heating oil, gas, wood, foodstuff	Gases (municipal, bottled, natural), heating oil vapour, carbon dioxide, carbon monoxide, nitrogen oxides, water vapour, suspended particulate matter, hydrocarbons and many other organic substances (combustion and carbonization products)
Hygiene and personal care	Body and cosmetic care	Cosmetics and consumer products; shower and bath water Detergents and cleaning agents,	Solvents, propellants, perfumes, inorganic and organic aerosols (dyes, pigments, lacquers, resins), halocarbon
Sanitation products	Cleaning and care procedure; pest control	polishes, disinfectants, pesticides Office supplies, EDP equipment, copiers	Water, ammonia, chlorine, organic solvents, insecticides, bactericides and chlorine compounds, domestic dust
Home office	Office activities	Paints, lacquers, adhesives, sprays, handicraft products, soldering irons	Organic solvents, low-volatility organic substances (plasticizers, flame proofing agents), toner components, ozone
Hobby and DIY (do-it-yourself) products	DIY activities, renovation, painting and the like	Tobacco products	Inorganic and organic gaseous and aerosol-type substances, particularly propellants and solvents, dusts, suspended

			particulate matter, metal vapours, monomers, biocides
Tobacco	Smoking	Fuels, paints, lacquers, cleaning agents, etc.	Carbon monoxide, nitrogen oxides, nicotine, aldehyde, nitrosamines and numerous other organic substances (e.g. polycyclic aromatic hydrocarbons, aerosols)
Garage store room	Storage		Fuel vapours, exhaust gas, solvents
Transportation			
Vehicles	Vehicle (car, use of vehicle, trucks, caravan, public transport)	Fuels, plastic and rubber materials, insulating material, ventilation	Vehicle exhaust gases and particles, carbon monoxide, nitrogen oxides, hydrocarbons, polycyclic aromatics, benzene, lead-containing suspended particulate matter, diesel soot), plasticizers (e.g. phthalates) and other additives, aldehyde, monomers (e.g. styrene), ozone (aircraft cabins)
Outdoor air pollution			
Emissions due to human activities	Ventilation, infiltration and diffusion through building exterior	Trade and industrial establishments, traffic, house fire, agriculture, outside burning	Inorganic and organic gases and aerosols, solvents, ammonia, odorous substances, PAHs
Natural emissions	Ventilation, penetration of soil gases, windborne dust	Plants in flower, occurrence of radium in soil, sea spray, soil re- suspension, natural decay	Pollen, radon, methane, sea salts, particles, microbes
Livestock	Excretion	Intestinal gases, odoriferous substances and excrement decomposition [products or pathological excretions; bacteria and viruses, allergenic dust	Ammonia and Sulphur compounds

1397 B4. Typical pollutants and their sources in indoor environment

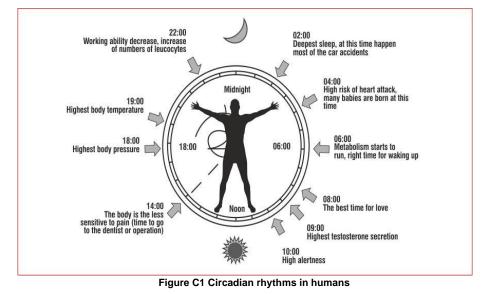
Pollutants	Sources
Inorganic components	
Carbon monoxide (CO)	
	Open fires, tobacco smoke, vehicle exhaust gases
Carbon dioxide (CO ₂)	Open fires, tobacco smoke, people, vehicle exhaust gases
Nitrogen dioxide (NO2)	Open fires, gas appliances, tobacco smoke, vehicle exhaust gases (in vehicle)
Sulphur dioxide (SO2)	Sulphur-containing fuels
Ozone (O3)	Photocopiers, laser printers
Ammonia	Flooring, concrete, levelling agents, mortar/plasters
Radon	Uranium and radium deposits close to the surface, building materials (granite, pumice stone and tuffaceous rock), artificial plaster
	Broken thermometer, plaints
Mercury	Paints
Lead	
Particles	
Settled dusts	
Asbestos	Tracked-in dusts
Fibrous dusts	Insulating materials, freeable asbestos
Aerosols	Mineral wool, building materials
Suspended particulate matter (PM)	Tobacco smoke Fuel combustion., cooking, fungi spores, pollen, animals, humans, bacteria
PM2.5 PM 10	windblown dust
TPM (total particulate matter)	

Annexure C

Lighting comfort

1403 C1. Circadian Lighting Design

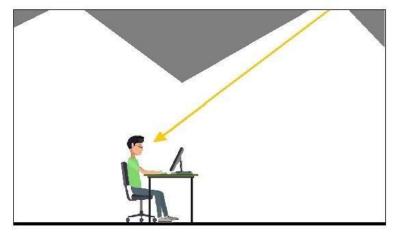
1404Light is one of the main drivers of the circadian system, which starts in the brain and regulates physiological1405rhythms throughout the body's tissues and organs, affecting hormone levels and the sleep-wake cycle.1406Circadian rhythms as shown in Figure C1 are kept in sync by various cues, including light which the body1407responds to in a way facilitated by intrinsically photosensitive retinal ganglion cells (ipRGCs): the eye's non-1408image-forming photoreceptors. Through ipRGCs, lights of high frequency and intensity promote alertness,1409while the lack of this stimulus signals the body to reduce energy expenditure and prepare for rest.


1411This feature promotes lighting environments for circadian health. The biological effects of light on humans1412can be measured in Equivalent Melanopic Lux (EML), a proposed alternate metric that is weighted to the1413ipRGCs instead of to the image forming photo receptors - cones, which is the case with traditional lux.

1410

1401

1402


1418 C1.1 Glare

Glare is the result of sudden large changes in brightness of the light source, which leads to lower efficiency
 of the vision. An occupant under the effect of glare fails to notice subtle changes and details of a scene. It
 is mainly classified into two types Direct Glare and Reflected Glare

- 1422 1423
- 1424
- 1425

1426 C1.2 Direct Glare

- 1427 Direct Glare is caused when within an occupant's field of vision, the luminaires of a room are without glare
- 1428 control thereby making the task area and surfaces very bright resulting in glare. The effects of it are fatigue,
- 1429 frequent mistakes and loss of concentration.

1430 1431

Figure C2 Direct glare

1432 C1.3 Reflected Glare

- 1433 Reflected Glare is caused due to reflections coming from light sources or surfaces of excessive brightness
- which is the result of incorrect Luminaire arrangement and incorrect workstation position. The effects of itare fatigue, frequent mistakes and loss of concentration.

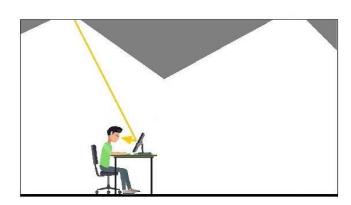


Figure C3 Reflected glare

1438 In general, Glare mainly experienced either as physiological effect known as Disability glare or 1439 psychological glare known as Discomfort glare

1440 C1.4 Disability glare

1441 Disability glare is direct impairment of visibility and visual capacity by the effect of glare. As an effect of
1442 glare occurs due to luminance from immediate background light source disability glare is happed.
1443 Discomfort does not necessarily causes by disability glare.

1444 C1.5 Discomfort glare

1445 Discomfort glare is disturbance, which impairs our sense of wellbeing by the effect of glare. The level of

1446 discomfort occurs due to glare is depends upon size of glare source and the luminance. Discomfort glare

1447 does not necessarily impairs object observation. As passing of time discomfort tends to increase and 1448 causes nervous tension and fatigue. Object observation impairment does not necessarily causes by

1449 discomfort glare

1450

1451 C 2. Basic Light Level Measurement Protocols

Light level (i.e., illumination) measurements are critical to comparing the capabilities of different lighting

1453 technologies. It is important to measure only the light being provided by the technologies being tested,

- which represents the actual illumination provided by the system being measured. The following guidelineswill help to ensure accurate and representative light level data.
- 1456 Follow these guidelines for all measurements as applicable:
- Where possible, use the same calibrated illuminance measurement meter (see Section 2.1). If the same
 meter is not available, use the same make and model of calibrated meter to minimize underlying
- 1459 differences in accuracy and internal meter spectrum correction characteristics.

• When taking measurements, verify that occupants and objects/materials are not blocking any light to the

1461 meter head. The use of a remote meter head cabled to the meter body is recommended to prevent the
operator from blocking the meter's "view" of the lighting system being measured. Measurement points that
are shaded, even partially, by obstructions that are not moveable should be noted for potential

1464 elimination.

1465 • Identify the appropriate task plane at which to take the measurements. For most outdoor areas and
1466 indoor corridors, gathering spaces, and warehousing or manufacturing spaces, this plane will be the
1467 ground or floor surface (where walking is the primary task). For most other indoor areas, the task plane
1468 will be a typical office desk height (30 inches above the floor).

1469 • Identify the measurement locations by marking and/or mapping. It is important to measure the same
 1470 locations for the baseline and post-installation lighting systems, or the same representative type of
 1471 locations if fixtures are relocated for the retrofit. Therefore, it is necessary to provide some permanent

1472 record of measurement point locations.

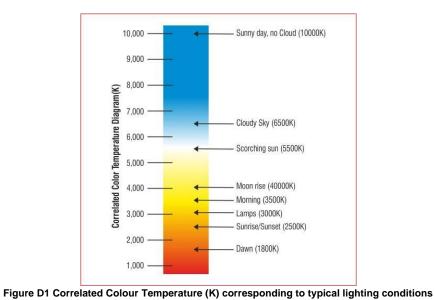
1473 – For interior areas, mapping (e.g., using a sketch or marked-up plans with dimensions) is usually the
1474 best option because marking on measurement surfaces will often not be allowed or will not be retained
1475 between measurements. Make sure to reference the measurement points to some permanent features of
1476 the space because desks and other furniture may be moved between the baseline and post-installation
1478

• Photographs of the test site conditions, meter setup, and measurement layout are recommended to

1480 provide a record of the conditions to be applied for repeated sets of measurements. These will help

1481 identify obstructions and other conditions that may affect readings. Note that using photos for color

1482 comparisons of baseline and retrofit installations may not provide accurate results because camera model


- 1483 settings including white (color) balance and exposure may vary. If photos are to be used for comparison
- 1484 purposes, the camera color accuracy should be assessed, and appropriate caveats noted.
- 1485 Record time and ambient temperature at start and finish of measurements.

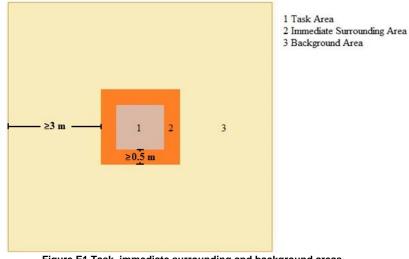
Annex D (Normative)

1486	Annex D (Normative)
1487 1488	Recommended methodology to calculate Equivalent Melanopic Lux (EML) for different type of lighting conditions
1489	
1490	To calculate the Equivalent Melanopic Lux (EML), multiply the visual lux (L) designed for or measured in
1491	a building by Melanopic ratio (R).
1492	
1493	$EML = L \times R$
1494	
1495	Where values of ratio R are given in Table D1
1496	
1497	Table D1 Light source and melanopic ratio corresponding to different CCT (K)

esp າg to d CC (K)

CCT (K)	Colour Appearance	Light Source	Melanopic Ratio
2950	Warm	Fluorescent	0.43
2700		LED	0.45
2800		Incandescent	0.54
4000	Intermediate	Fluorescent	0.58
4000		LED	0.76
5450	Cool	CIE E (Equal Energy)	1.00
6500		Fluorescent	1.02
6500		Daylight	1.10
7500		Fluorescent	1.11

1501


1502	Example 1:
1503 1504 1505 1506 1507	If incandescent lights provide 200 lux in a space, they will produce equivalent melanopic lux of: EML=200x0.54 EML=108 Example 2:
1508	If fluorescent lighting of 6500 K CCT provides 200 lux in a space, then the EML will be
1509	EML = 1.02x200
1510 1511 1512 1513	EML = which is 204 EML. Example 3:
1514 1515	If CFL of CCT 6500 and LED of CCT 4000 combine provide 300 lux, then the EML can be calculated by the following method:
1516	Lux levels provided by CFL is 100(can be determined by switching off LEDs)
1517	EML _{CFL} =100 x 1.02=102 EML
1518	Lux levels provided by LED is 200(can be determined by switching off CFLs)
1519	EML _{LED} =200 x 0.76=152 EML
1520	Total EML shall be calculated
1521 1522	EML _{total} =EML _{CFL} + EML _{LED} =254
1523	Example 4:
1524	If fluorescent lighting of 7500 K CCT and daylighting provide 500lux
1525	Lux levels provided by daylight is 400(can be determined by switching off fluorescent lights)
1526	EML _{daylight} =400 x 1.10=440 EML
1527	Lux levels provided by fluorescent are 100(total lux -daylight lux)
1528 1529 1530	EMLfluorescent =100 x 1.11=111 EMLtotal=EMLfluorescent+ EMLdaylight=551
1531	
1532	

1533	4. Recommended methodology to calculate lighting comfort parameters
1534 1535 1536 1537 1538	If the Illuminance at three points (varies according to size of task area) of task area (varies according to the nature of activity) are 515 Lux, 535 Lux and 550 Lux, further the Illuminance at three points (varies according to size of immediate surroundings area) of immediate surroundings area are 430 Lux, 465 Lux and 495 Lux then Illuminance of task area shall be calculated by averaging the measured illuminance within the task area
1539 1540	Illuminance=515+535+5503 Illuminance=533 Lux
1541 1542	Uniformity of Illuminance shall be calculated by ratio of minimum illuminance to average illuminance within the task area
1543 1544	Uniformity of Illuminance=515533 Uniformity of Illuminance=0.9
1545 1546	Illuminance of the immediate surrounding areas shall be calculated by averaging the measured illuminance within the immediate surrounding areas
1547 1548	Illuminance of immediate surroundings=430+465+4953 Illuminance of immediate surroundings=463 Lux
1549	Ratio between a task area illuminance and immediately adjacent surroundings illuminance = 533463=1.15
1550	Percentage of the task area meeting the required illuminance
1551 1552 1553	If in a conference room there are five occupants, the measured illuminance of their task areas are 510 Lux, 580 Lux, 455 Lux, 550 Lux and 535 Lux. Thus 4 out 5 locations are meeting the threshold value, and then the Percentage of the task area meeting the required illuminance can be calculated by
1554	Percentage of the task area meeting the required illuminance=4*1005=80 %
1555	
1556	
1557	
1558	
1559	
1560	
1561	
1562	
1563	

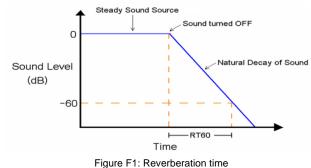
Annexure E (Normative)

Recommended methodology to calculate lighting comfort parameters

Figure E1 Task, immediate surrounding and background areas

Area where the visual task is performing defined as the task area. The visually relevant elements such as background contrast, size of objects, presentation time and luminance of objects are used to determine the visual performance required for the visual task. The reference surface of the visual task can be vertical, horizontal or inclined.

At least 0.5 m band width area surrounding the task area within the field of vision is defined as the immediate surrounding area.


Background area is defined as the band of at least 3 m wide adjacent to the immediate surrounding area within the limits of the space.

1583	Annexure F
1584	Acoustic comfort

1585 F.1 Reverberation time,

1586T60, is a metric which describes the length of time taken for a sound to decay by 60 dB from its1587original level. The optimal reverberation time for any room depends on both the intended use of1588the space and the volume of the space, and additionally, reverberation is frequency dependent.1589The clarity of speech and music at any location within a room is dependent on the size, shape, and1590surface materials in the space, and as such, the clarity is highly dependent on the reverberation1591time. Short reverberation times are recommended for speech, whereas longer reverberation times1592are recommended for music.

1593Not only does the reverberation affect quality of sound, but it also affects the level (dB) of sound1594within the space from all sources including noise. In spaces with long reverberation, the sound of1595voices and footsteps take longer to dissipate, contributing to higher levels of ambient noise. The1596added noise produced by reverberation can decrease speech intelligibility and in some situations1597cause additional stress.

1598 1599

1600 F 2 Weighted Level Difference (Dw)

1601 The Table F1 shows the Dw values and its reaction

1602

Table F1 D	Values and its Reaction
------------	-------------------------

Dw / NIC	What can be heard
25	Normal speech can be understood quite easily and distinctly through wall
30	Loud speech can be understood fairly well, normal speech heard but not understood
35	Loud speech audible but not intelligible
40	Onset of "privacy"
45	Loud speech not audible; 90% of statistical population not annoyed
50	Very loud sounds such as musical instruments or a stereo can be faintly heard; 99% of population not annoyed
55	Superior soundproofing; most sounds inaudible